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Special  Computation Procedures. 1. 

I. Introduct ion,  

Many problems 0% appl ied  mathematics arise n a t u r a l l y  
as d i f f e r e n t i a l  equations.  I n  most cases  t h e r e  is no hope 
of f ind ing  an e x p l i c i t ,  closed representa t ion  of the solu-  
t i o n .  Thus w e  are l ed  t o  the computer. However, the 
a v a i l a b i l i t y  of high-speed computers does not mean that 
"p rac t i ca l  men" can give up the a n a l y t i c a l  study of d i f -  
f e r e n t i a l  equations.  

Indeed, i n  some sense,  the g rea t  advance i n  our  com- 
puta t iona l  a b i l i t y  requi res  t ha t  w e  put  more e f f o r t  i n t o  
t h e  ana ly t i ca l  study. A f t e r  a l l ,  twenty years  ago w e  
could only shrug our  shoulders a t  these  problems. 
w e  - can and - do attempt t o  ge t  approximate r e s u l t s .  
i n  order  t o  ge t  computational r e s u l t s  that are meaningful, 
w e  must do some ana lys i s .  

Now 
And, 

I n  these l ec tu re s ,  4: hope t o  present  some of the ideas 
and results i n  t h i s  area. 

11. Ordinary - Dif fe ren t i a l  Equations. 

The s imples t  problem is  Pure In i t ia l -Value  Problem 

Here, y = y(x)  may be a vector  and then (2 .1 )  represents  
a system of equations.  
Ini t ia l -Value problem may be put i n  t h i s  form. 
suppose we start with 

It is well known tha t  almost every 
For,  

j = 0, l,..*,U-l. 
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Special Computation Procedures. 2. 

Then we set Z1 = ylJ z2 = y 0) , ...> z1 = y ( U - 1 )  , and we 
write (2.2) as 

2; = z3 
? . .  

. .  . 
(2.11) . .  . 

j = 1, 2, ... f u. 

We now turn to the question of numerical methods for 
approximating the solution y(x) of (2.1). 

We assume that f(x, y) is continuous in (x, y) and 
satisfies a Lfpschftz condition in y, i.e., there is con- 
stant L such that 

( 2 . 3 )  

These conditions assure us of the existence of a unique 
solutlon y(x) in some neighborhood of xo. 
who are skeptical of such mathematical niceties, let us 
consider two examples. 

For those of you 

Example 1: y‘ = y1’2, y(0) = 0 .  

Then y,(x> = 0 and y,(x) = &x2 are solutions in the 

$ 0  3 



Special  Computation Procedures. 3. 

i n t e r v a l  o < _I x < - 1. 
I 2 Example 2: y = 1 + y , y ( 0 )  = 0. 

I n  t h i s  case y ( x )  = t an  x and there is  no so lu t ion  i n  t h e  
la rger"  i n t e r v a l  o < x < 77. 11 - - 

Now, l e t  an increment h be chosen; then w e  seek the  
values yk which approximate y(kh + xo).  

The simplest formula we can use i s  
I 

(2.4) 

Here % = xo + kh. T h i s  i s  an example of a Single-Step 
Method which we wr i te  as 

From the  form of (2.5) one might think t h a t  
I 

f l  i s  the  only na tu ra l "  choice. However, l e t  m e  point  out  
tha t  the familiar Runge-Kutta method i s  a l s o  of t h i s  form. 

Theorem 1: 
the  Lipschftz condition (2.3) .  
a l s o  s a t i s f y  a Lipschi tz  condition. Then 

Let f (x3  y >  be continuous i n  (x, y )  and satisfy 
Moreover, l e t  $(x, y; h )  

I '  

( 2 . 6 )  L i m  6<xs Y s  h )  = f ( x ,  Y )  
h+O+ 
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Specia l  Computation Procedures. 4. 

is  a necessary and su f f i c i en t  condition f o r  t he  convergence 
o f  t he  solution {Yk] o f  (2.5) to y ( ~ )  i n  the  l i m i t  as 

- 
h.0, kh -# x0 = X. 

Theorem 2:: 

the Lipschi tz  condition (2.3): l e t  $(x, y; h)  a l s o  s a t i s f y  
a Lipschi tz  condition. 
condi t ion (2.6) be s a t i s f i e d .  .Final ly ,  l e t  the t runca t ion  
e r r o r  be O(hp), p >0, i . e . ,  i f  y(x) is the so lu t ion  of 
(2.1), then 

Le t  f(x, y)  be continuous i n  (x, y )  and s a t i s f y  

Moreover, l e t  the "consistency" 

y[(k-kij h] = y(kh) + h[q(%, y(kh); h )  + O ( h p ) ] .  

- 
Then, as h-0 and kh = x, we have 

(2.7) IIYk - y(kh)//  = O ( h p ) .  

We w i l l  omit t h e  proof of Theorem 1, as it is technica l ly  
complicated. Howevers l e t  us give a proof of Theorem 2. 

Proof of  Theorem 2. L e t  

Ek = Yk - ygkh). 

Therefore, sfnoe b a l s o  s a t i s f i e s  a Lipschi tz  condition, 

i . e . ,  



Special  Computation Procedures. 5. 

We sum the geometric progression and f i n d  that 

. 

I f  w e  now assume that  Eo = 0, w e  ob ta in  t h e  desired r e s u l t .  

Having these two theorems, w e  w i l l  leave the top ic  of 
s ingle-s tep methods f o r  the i n i t i a l - v a l u e  problem. 

I 

O f  course, t he re  are o the r  methods of  t r e a t i n g  the 
i n i t i a l - v a l u e  problem. 
Step Methods. The simplest  such method i s  

L e t  us  consider the Linear Multi- 

- - Yk-l + 2hf($> Yk)’  
( 2 . 8 )  *k+1 

Notice tha t  i n  t h i s  case w e  must spec i fy  both Yo and Y1. 
Mow Yo can be taken as yo, but i t  i s  almost impossible t o  
spec i fy  Y1 exact ly .  

We now consider only the s c a l e r  case, i . e . ,  y(x)  i s  
a s c a l e r ,  not  a vector .  

I n  general ,  w e  have constants alJ 0: 2 J  pl, . . ., pk, and w e  use the recurrence r e l a t i o n  

7 0  6 



Special  Computation Procedures. 6 .  

Of course, w e  assume a k  # 0 .  

(2 .9)  i s  an "exp l i c i t "  l i n e a r  mult i -s tep method. On the 
o t h e r  hand, i f  Bk # 0, then w e  have an " impl ic i t "  method. 

If A = 0,  w e  say that 

Example 3: Consider the  l i n e a r  mult i -s tep method 

One can e a s i l y  v e r i f y  that -- provided f ( x ,  y )  i s  n i c e  
enough -- 

T h a t  is, (2.10) i s  a consis tent  approximation t o  (2 .1)  and 
w i t h  a small t runca t ion  e r ror .  

When I present  t h i s  example i n  c l a s s ,  I ask my students. 
t o  t r y  the two problems 

i n  the range 0 < x < 1 w i t h  h = 0.01. 
who have access  t o  a computer, I recommend these  problems. 

For those of you _ . -  
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You w i l l  find them very i n s t r u c t i v e .  

In any case,  a simple ana lys i s  -- but one which is  too 
lengthy t o  give here -- shows tha t  the so lu t ions  of (2.10) 
a r e  unstable and do not  converge t o  the so lu t ion  of (1 .2)  
Moreover, t h i s  i s  t rue even i n  the simplest aases. 

The r e s u l t s  i n  t h i s  case are too complicated t o  prove 
i n  the short  space of t i m e  w e  have here. However, they are 
easy enough t o  state.  (See Henrici  

L e t  

We have a S t a b i l i t y  Condition: 
roo t s  o f p  ( 5) = 0 ,  

Moreover, i f  5 is  a 

And, as before,  
T h i s  condition -- i n  

w e  must have 

double root  of 

[l] f o r  de t a i l s . )  

For a l l  ( which are 

f ( q )  = 0, w e  must have 

w e  have a Consistency Condition: 
words -- merely says that the so lu t ions  

of (2.11, i o e e ,  the so lu t ions  of the d i f f e r e n t i a l  equation 

rather easy t o  v e r i f y  that a necessary condition f o r  con- 
almost" s a t i s f y  the d i f fe rence  equation (2 .9) .  It is  I I  

s i s t ency  is 

7 0 8  
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Specia l  Computation Procedures. 

f k  

8.  

Defin i t ion :  A l i n e a r  m u l t i - s t e p  method given by.two sets 

of c o e f f i c i e n t s  { w j j '  b j l  
the e r r o r  En = I Yn - y(xn) 1-0 as h 4 O  and n-cm i n  
such a way that xn 
1,. . . ,k-1 and the funct ion f (x, y )  is  continuous i n  (x, y )  
f o r  a l l  y and / x - x o  I L b ( f o r  some b > 0) and a l s o  
s a t i s f i e s  a Lipschi tz  condition i n  y. 

is ca l l ed  convergent i f  

- 
x, provided only E --DO f o r  j = 0, 3 

Theorem 3: The l i n e a r  multi-step method given by the  two 
sets of c o e f f i c i e n t s  (o( j ]  , { b  j ]  is  convergent -- i f  and 
only - i f  both the  s t a b i l i t y  condition (2.11a), (2.11b) and 
t h e  consistency condition (2 .12)  are satisfied. 

Theorem 4: Suppose the l i n e a r  mult i -s tep method (2.9) is  
convergent. L e t  y ( x >  be a so lu t ion  of (2.1).  Assume a l s o  
tha t  

Then I Em I = O ( h p ) .  

Now, l e t  u s  mention another approach t o  our bas i c  
problem. T h i s  approach is motivated by the f a c t  that  
many good l i n e a r  mult i -s tep methods are impl i c i t ,  i . e . ,  
/ak f 0. 
So we consider Predictor-Correzter Methods of  the form 

Therefore the solut ion of (2.9) becomes messy. 

7 0 9  



Special  Computation Procedures. 9 .  

The general  idea here i s  t o  use a high-order pred ic tbr -  
formula and a l 's table" c o r r e c t e r  formula. 

Before w e  leave these  i n i t i a l - v a l u e  - problems, a few 
remarks a r e  i n  order .  

The motivation f o r  l i n e a r  mult i -s tep methods i s  c l e a r l y  
the  d e s i r e  t o  use more accura te  formulae. However, one 
should note t h a t  these  methods can lead t o  many complica- 
t i o n s .  F i r s t  of a l l ,  one must have accurate  methods f o r  
more 
A l s o ,  there  i s  the  problem of s t a b i l i t y .  F ina l ly ,  t he re  
is  a whole hos t  of problems assoc ia ted  with the slow 
decay of c e r t a i n  components of t he  e r r o r  which have been 
introduced by the  l i n e a r  mult i -s tep method i t se l f .  Once 
more, l e t  m e  recommend the  book by Henrici .  

11 s t a r t i n g "  values than a r e  implied by the  problem. 

I1 Now, l e t  us  say a few words about boundary-value" 
problems Consider the problem 

where t h e  func t ion  p ( x )  - > po > 0 is  a "smooth!' funct ion.  

We take h = 1/M, where M is  an  in t ege r .  

3 

Once more, 
l e t  Y represent an approximation t o  y ( j h ) ,  and l e t  

710 

I 
1 
I 
8 
I 
1 
I 
1 
I 
1 
1 
1 
I 
I 
I 
1 
I 
1 
1 



I 
I 
1 
I 

= p [ ~ ~ + 1 , / ~ ~ ~ ] ~  9+1/2 L 
roe first s e t  of equations t o  come 

t o  mfnd are 

Now w e  have two problems: 
(1.) Can w e  solve these equations? 
( 2 . )  Assunfng the  answer f ,o  (1.) is yes,  does the 

e r r o r  Ek = I Yk - y(kh)(-DO? 

In both cases the  answer is yes! Let us look a t  the 
f i r s t  quest ion.  

Consider a general  t r id iagonal  system of l i n e a r  
equations of the f o m  Yo = Yn = 0 

where 

Then, when we look a t  the straight-forward el iminat ion 
pmcedupes we discover the  following algorithm. L e t  

f o r  k = 1, 2, ... M-1. (2.17a) Dk = b. k f ak Gk -1 > I 
I 
I 
I 
I 

Then 



Special  Computation Procedures. 11. 

(2.1811) 3’ Y = G  P + F  3 9 9+1 

Thus, our  equation can be solved rather e a s i l y .  Moreover, 
the condition (2.16) guarantees that t h i s  procedure i s  
numerically s t a b l e .  

A s  f o r  the second question, i f  we mult iply (2.15) by 
Y, and sum on j, w e  have 

1 

J J o r  

And, f o r  any s e t  2 * j = 0, 1, 2, ... > M w i t h  P I J  
Zo = Z = 0, w e  have m 

T h i s  last r e s u l t  is e a s i l y  established by elementary matrix 
theory Since 

712 

I 
1 
I 
I 
I 
1 

I 
1 
1 
I 
1 
1 
1 
I 



we can elaLm :he e x Z s ~ e r x e  of' a constant K > 0 so that 

Let k > r .  Then 

k - Y  

Theref o re  
r 

That is, using (2 ,203 ,  

And If I" = 0 ,  I 

It is  now an  easy matter t o  prove the convergence 
of the {Yk} 
The simplest, approach is merely to observe t h a t  the e r r o r  
Ek satfsffes a similar difference equation, 

LO tne soldtzon of' the boundary-value problem. 

However, i n  



Special Computation Procedures. 13 

this case, the right-hand-side f -----DO as h 4 0 .  Hence 
j 

h IfJ/* 4 0  as h d O  

and the convergence follows from (2.21b). 

111. Partial Differential Equations. 

Once more, let us consider the Initial-Value Problem. 
Consider the special case of a first-order-linear system of 
the form 

. . . I xn) and U is a vector [ U1, U2, .. . .UN) 
a 2' Here, x = ( x ~ ,  x 

and P(x, t; D> is a matrix polynomial in the (F) with 
coefficients depending on (x, t). 

Let's look at a very simple special case -- 

One can easily prove that the solution to this problem 
is 
(3.2a) u(x, t) = f(x - t). 

Indeed, t o  verify that (3.2a) is a solution (assuming that 
f(x) is differentiable) is an exercise in Calculus. 

7i4 
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Specia l  Computation Procedures, 14. 

Even though .de m o w  the  so lu t ion  of t h i s  problem, 
l e t  us look a t  some f inice-difference approximations. 

which reduces t o  

( 3 . 3 )  

where A =  k/h, Repeated appl ica t ion  of  (3.3) leads t o  a 
formula of the  forin 

The exact values of the coe f f i c i en t s  a j  are ineSf3ent ia l~fQr 
our  present  argument. 
value of V ( x ,  t )  depends only on the value of f (x) a t  
po in t s  t o  the  right of x. 
w e  s ee  t ha t  the so lu t ion  of the d i f f e r e n t i a l  equation de- 
pends on a value of" f ( x )  at  a poin t  t o  the  l e f t  o f  x; 
namely ( x - t > ,  
i n i t i a l  function f [x)  whim is  very smooth -- say i n f i n i t e l y  
df f fe rer i t iab le  -- and the  solut ions of (3.3) cannot possibly 
converge t o  f fax- t ) .  
and f ( x )  = 0 for x - b 0. 
Vgx,  nk)  = 0 f o r  a11 x > 0, 

f o r  a l l  x < nk. 

The important f a c t  i s  that the 

On the  o the r  hand, f r o m  (3.2a), 

13 i s  now ar, easy a a t t e r  t o  construct  an 

 or example, l e t  f (x )  > o f o r  x < o 
Then, we see  from (3.4) that 

On the  o t h e r  hand, U ( x ,  nk) > 0 

A l l  r i g h t ,  letus t r y  another approach -- 

J 
i / ( x ,  t + k) - ujx, t) - v(x,  t )  - U(x-h, t )  

h 
- -  

k 

715 



Special  Computation Procedures a 15 

which reduces t o  

I n  t h i s  case, an argument very similar t o  the one w e  have 
j u s t  given shows that we must take A 5 1. 

Thus, these  examples i l l u s t r a t e  the general  s i t u a t i o n .  
As i s  the case of ordinary d i f f e r e n t i a l  equations,  it is  
not  enough t o  have a consis tent  approximation t o  the d i f -  
f e r e n t i a l  equation. Moreover, the r e s t r i c t i o n s  on the 
d i f fe rence  schemes are frequent ly  r e s t r i c t i o n s  o p  r a t i o s  
of the step-lengths i n  the  d i f f e r e n t  coordinate d i r ec t ions .  

L e t  us look a t  another example, the heat equation 

( 3 . 6 )  - -  au - -9 a 2 u  u(x,  0 )  = f ( x ) .  a t  3% 
We try the difference scheme 

I n  t h i s  case, the  necessary condition i s  

( 3 . 7 )  

This r e s u l t  is  p a r t i c u l a r l y  i n t e r e s t i n g  because, un l ike  our  
ear l ier  r e s u l t s ,  t he re  does not seem t o  be any obvious 
re la t ionship  between (3.7) and t h e  a n a l y t i c a l  p roper t ies  of 
the so lu t ion  of (3.6).  That statement i s  not  s t r i c t l y  

716 
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16. 

and the  physical ly  i n t e r e s t i n g  so lu t ions  of (3.6) s a t i s f y  
a similar estimate.  OIZ t he  o the r  hand, as w e  shall see, 
there are convergent difference schemes for the  heat equa- 
t i o n  which do not eP.joy property ( 3 Q 8 ) .  
t h i s  way” Since ( 3 0 7 )  fmplEes (3.81, it i s  easy t o  prove 
that the  so1ution.s v (x ,  nk) of“ t he  d i f fe rence  scheme 
converge t o  U(x- t >  the solut ion of ( ‘ 3 0 6 )  provided that 
(3.7) holds. However, it is not  apparent that ( 3 0 7 )  is  
a necessary conai t lon  1”or convergence e 

Let me put i t  

Let us r e tu rn  t o  OUF general problem. I f  we s e l e c t  
an h = (h19 h23 o o o )  %1 ) and k then a f i n i t e  d i f fe rence  
equation should g ive  us approximations t o  the so lu t ion  
U(x, t) at The l a t t i c e  points  (j, h19 j, h29 . . ., jn hn, r k )  
Let v ( r )  denote the vector  

I1 and l e t  
F o r  example, w e  could  have 

11 )) (I-, % I  ! I  denote some n o m  on these  vec tors” ,  

7 I ‘I I 



Special  Computation Procedures. 

If  B is  a l i n e a r  operator  ( - . e .  , an i n f i n i t e  m 
i n  t h i s  case) ac t ing  on these  vectors ,  we def ine 

t r i x  

(3.10) 

Suppose we have a f i n i t e - d i f f e r e n c e  approximation t o  
(3.1) of the form 

I n  (3.11) we should wr i te  2/(r+l; h )  and B ( r ;  h )  s ince  these  
operators  and vectors  w i l l  depend on the  l a t t i c e  hrand the 
increment k ,  e t c .  

Defini t ion:  
i s  s t a b l e  i n  the i n t e r v a l  0 5 t 
i f  t he re  is a constant K, depending on T, such that  

We say that the  family of operators  IB(r ; ,  h)) 

(Inom T and i n  the  11 

(3,12) )I B ( r ;  h )  B ( r - 1 ;  h )  . . . B ( j + l ;  h )  B ( j ;  h ) l l &  K 

The basic convergence argument i s  based on t h i s  
not ion and a simple argument which we saw e a r l i e r  i n  our 
discussion of s ing le-s tep  methods for ordinary d i f f e r e n t i a l  
equat Ions. 

Theorem: Suppose (3Q1) has a so lu t ion  u(x ,  t ) .  Let w(r) 
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- . e .  

Jl Assume that (3.11) is a consis tent"  approximation t o  (3*1), 
i . e .  

(3.131 
and 
(3.141 llacr~ll = O(kl-rP1) p > 0 .  

w(r+l) = Bgr)  w ( r >  + a ( r )  

F ina l ly ,  assume that  Che family { B ( r ;  h)]  i s  stable f o r  
o L - t L - T i n  the 11 if norm, 

Proof: Let E(r) = w ( r )  - u ( r ) .  Then, from (3.13) we have 

E(r+l) = B g r )  E ( r )  f a ( r )  
= R ( s )  B t s - 1 )  E ( r - 1 )  + B ( r )  a(r-1) + a ( r )  
= B ( r )  B(r-3-j o o o  B(O) E ( 0 )  + 

r 1 [ B ( P )  B ( r - 1 )  o o o  B ( j ) ]  A ( j - 1 )  + A(r). 
J=2 

Since the family [B(r;  h)) is stable, and E ( 0 )  = 0, we have 
I 

Thus w e  ?xv% shown that., under reasonable conditions,  

719 



Special Computation Procedures 19 

stability implles convergence. A natural question is -- 
what about the converse? In the appropriate theoretical 
setup, the answer is that stability is in fact also necessary 
for convergence. Let me refer you to the excellent book 
by Richtmyer [4] e 

stability is absolutely essential! 
Of course, as a practical matter, 

In general, there is no obvious way to determine the 
stability or instability of a difference scheme, 
in some cases we can get a grip on these ideas. 
these precise results lead to relatively good rules of 
thumb. 

However, 
And, 

Consider the case where P(x, t; D) has constant coef- 
ficients. That is 

(3.16) - = P(D)  u a -t I 

where the A are constant matrices. 
0 *-Pn 

Moreover, let us assume that the difference equation 
(3*11) takes the form 

where B is a fixed operation. More specifically, we assume 

I 
I 
I 
I 
I 
I 
I 
1 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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where the Be are constant matrices. Consider the 

matrix-valued function 

1.' "'3 cn 

A rather straightforward application of Fourier analysis, 
which can be done in several ways, leads to the following 
conclusion: Let the norm be chosen as in (3.9b). Then 

Thus, our problem has been reduced to a finite-dimen- 
sional problem. This problem is still not trivial. In fact, 
it is sometimes rather messy. However, we do have a method 
of analysis. 

Let us return to our earlier examples. Consider the 
equations (3.2) and the difference equations ( A . )  and (B.). 
In case (Ao), we use equation (3.3) and find that 

and 

7 2 1  
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B<"T> = ( 1 + 2 N  

Ildr(r)ll = (1+2A)'-"00as r -00, rk - T 

Thus the  nonconvergent method ( A .  ) if h is  a constant .  
i s  unstable.  

I n  case (B.) we f i n d  that 

/ ( e )  = ( l - ~ )  + )\e 

1/3(e] l  = - A ( l -cosa)12 + ~2 s in28  

= 1 - 2 h ( l - c o s B )  + A2(1-2c0s0 

- ie 

Since l-cos 

s i n  2 0 

- > 0 ,  M A X I / ( @ )  I L 1 i f  and onAy 
And, i n  t h i s  case, MAX (br(0)l = MAX (B(B) l r .  

+ cos2e) + 

A 4  1. 

Turning now t o  the  heat  equation (3.6) and the r e -  
lated difference equation, we f i n d  t h a t  

Thus / ( e )  is real9 / (0) - l9 and / ( e )  - > -1 i f  and only 
if (3.7) holds .  

Well, thigi is a f i n e  a n a l y s i s ,  But what about t he  
general  problem of d i f f e r e n t i a l  equations and a f o r t i o r i  

7 2 2  
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d i f fe rence  equations w i t h  variable coe f f i c i en t s .  I n  the 
$enera1 case j  w e  have the following r u l e  of thumb: 
each value (xO4 to) j  O/ - to - 1 T, consider the d i f fe ren-  
t i a l  equation and difference equations w i t h  all koef f i c i en t s  
evaluated a t  (xo, to). These d i f fe rence  equations are of 
the farm we I-iave analyzed. And, i f  f o r  (x,, t o )  the cor- 
responding disference equations are "stable",  then they 
are a l s o  s t a b l e  i n  the var iable  coe f f i c i en t  case. 

For 

The v a l i d i t y  of t h e  above rule of thumb has not  been 
es tab l i shed  in complete genera l i ty .  However, there are 
some fa i r ly  general  r e s u l t s  j u s t i f y i n g  t h i s  procedure. 

Before proceeding, l e t  us  poin t  out  that i f ,  w i t h  a 
f i n i t e  difference equation of  the form (3.11) which w e  
write f o r  sho r t  

v ( r + l )  = B v ( r ) ,  

w e  a s soc ia t e  t he  norm 

L e t  us now consider as a f u r t h e r  example the wave 
equation 

( 3  e 21) d2u d 2 u  
a t 2  a* - 5  

7 2 3  
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We t r y  the difference scheme! 

23 

n n - l  n+l - 2v + Vk Vk k 
h 

where w e  write v ( k n x ,  
difference equation t o  

n a t >  = v i .  We transform the 

where w e  have put A = a t / a x .  we could use a geometric 
argument t o  establish s t a b i l i t y  c r i t e r i a ,  s ince  we already 
know that  the so lu t ion  of (3.2X) i s  U = f (x+t )  + g ( x - t ) ,  
The domafn of dependence argument t e l l s  us  that f o r  s t a b i l i t y  
we must have A< 1. It i s  important t o  recognize, however, 
that  (3.22) i s  not  of the form (3.11). 
i s  on the n th  and the n - l th  values.  

The time dependence 

To avo id  t h i s  d i f f i c u l t y ,  w e  write (3.22) as the system 

03.231 
X a - 1  n w- = Vk K 

I (3,241 1 

1t8s possible t o  show that  )Jpr(e)ll  < K, but w e  w i l l  no t  
do i t ,  Instead w e  w i l l  prove the necessary condition f o r  

7 2 4  
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the t ruth of t h i s  condition, foe,, the eigenvalues are 
less than o r  equal t o  one i n  absolute  value. The eigenvalues 
must s a t i s f y  

Y- 

(3.25) p - 2 [ 1 - p ( l - c O s e ) ]  p+ 1 = 0. 

It follows immediately that the product of/Lc+ and 
/c1 - must equal 1; i f  the roots  are real, then they are 
e i t h e r  +1 o r  -1, o r  one I s  larger than the o t h e r  in  absolute  
value.  Complex roo t s  can only be one i n  magnitude. This 
leads to the condition 

o r  
( 3 3 5  1 -1 1 - A2(1 -cose)  L 1, 

which is t r u e  i f  and only i f  hL_ 1. 

By another approach, assume the so lu t ion  of (3.22) 
is of the form 

Subs t i t u t ing  i n t o  (322 gives 
r 1 

Fact orfng pn gives 

which is  i d e n t i c a l  t o  (3.25). 



A s  before, assume t he  so lu t ion  of (4 .2)  i s  

7 2 6  
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Hvo Prac t i ca l  Problems p_ i n  Partial  D i f f e r e n t i a l  Equations. 

Consider the heat equation (3.61, but ask that  i t  be 
satisfied i n  

with conditions given 

I n  the notat ion of  (3.22b9 wri te  t h e  following family of 
difference equations: 

where A = n t / ( n x ) 2  and 0 < 1. Rewriting, we 
obta in  

which, when appl ied t o  a system of mesh poin ts ,  y i e l d s  a 
t r i -d iagonal  system of l i n e a r  equations i n  terms of the 
known boundary conditions,  which can be solved f o r  a n y d .  
Is t he  system s+,able? 
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We then obtain 

It's clear that / &  1 for all&, A ,  0. TO meet 
the stability condition 45 -1, it is necessary and 
sufficient that 

(4.4) (26-1) h c 1/2 
yote  CL-L. a n  

b l l a b  I1 

A is always 
restricted. 

7 
ij2, {'i.iij is no restriction on 0 ,  since I / _  

0; if o( > 1/2, on the other hand, ;>\ is 

To study the stability and convergence of (4.2), 
you must make atdetailed study of the tri-diagonal matrix 
in an equation for the error, and this gives the same result 
as (4.4). 

We now have a whole family of finite difference equa- 
tions in terms of one parameter to solve ( 3 . 6 ) ,  and in 
particular, if we take d < 1/2, the equations are un- 
conditionally stable o 

To prove the convergence of the method for o( = 0, 
consider 
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n Max vk n-).l occurs  on the boundary, o r  vk 2 v;+'. Suppose 
k 

Max v:*l is nst on the  boundary. 

where vk n*l i s  a rnaximxm, 

A t  the i n t e r i o r  po in t  
k 

vk-l  nd-1 - 2 V k  n-kl + v;;;' 0. 

men,  s ince A )  0,  vk - vk. S imi la r ly ,  Min vk n+l is  
k 

t r u e  for k = 0 o r  ba = l / a x  o r  VI: 4 v;+l. 
two statements t o g e t h r ,  it follows that 

From these 

f o r  o L t L n A t  

which is the  s t a b i l i t y  condition. 
0 L x  L 1 )  

To see that t h i s  insures  convergence, consider the  
errord equation 

Let 0 n n where IGiI 4 L ( n t ) l + P  and Ek = 0, Eo = EM = 0. 

Max Ek = If j f 0 ,  j # M, then 
k 

by arguments similar t o  .those used t o  prove (4.6).  
i s  s t ra ightforward t o  show by continued i n e q u a l i t i e s  that 

Now it 

7 2 8  
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I 
I 
I 
I 
I 

and thus convergence is  assured. 

As an example of a two-dimensional problem, consider 
the heat equation 

au - -  a2u a2u 
a t  a x  d Y 2  

2 + -  (4.10) - -  

f o r  t > 0, and (x, y) i n  some region R. The i n i t i a l  and 
bGL!Zld2qr C O E d i t i C r L Q  VPitt=fi  2 fG;-iii SXX3lZgGiiS tt (4.1). 

If we wr i te  vn 
d i f fe rence  equation 

f o r  v ( k n x ,  jny, n n t ) ,  we get the  k, j 

, j  + vk,j+l 
vk, j-1 - 2Vk 

The superscr ip ts  on the right-hand s ide  have de l ibe ra t e ly  
been omitted, 
we could prove a Miri-Max pr inc ip le  similar t o  (4.6) and 
the corresponding convergence r e s u l t s ,  but the  r e s u l t i n g  
system of equations, when applied t o  a problem, a r e  un- 
tenable ,  To avoid t h i s ,  consider the  case of (4.11) 
wr i t ten  as 

If we put the superscr ip t  n+l  on each term, 

n+2 n+l n+l n+l n+l 
,j + vk- l , j  + - 2Vk (4.12) vk, j - vk,3 = vk- l , j  

At ( A d 2  
V k  n+2 . - 2<+; + Vk n+2 j+l , Jj-1 I 

(Ay12 
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where the superscr ipt  changes are obvious. 
t r i -diagonal  system which must be inverted f o r  each value 

T h i s  gives  a 

of k .  Note carefu l ly  t he  difference i n  (4.11) wr i t t en  as 

n*l n+l 
k - l s j  V - ^ A  

- 2v; , j  + v;,j+1 

Q Y I 2  

n 
Vk,J - l  

The use of (4.121, combined with (4.13), forms the well 
known a l t e r n a t i n g  d i r ec t ion  method, which is  stable and 
therefore  converges, pyovided A t  is  given the same value 
f o r  every p a i r  of steps.  
t o  that used f o r  (4,2). 

The proof of s t a b i l i t y  i s  similar 

To i l l u s t r a t e  a p r a c t i c a l  problem involving an e l l i p t i c  
equation, a boundary value problem, consider 

w i t h  U = g ( x B  y> on the boundary of R. 

A s  a f irst  s t e p ,  we must pick A x  and n y ,  i . e . ,  s e t  up a 
bas ic  l a t t i c e  i n  R .  

To accomodate the boundary by means of the bas ic  
m e s h s  w e  can e i ther  modify the boundary t o  f i t  the mesh, 
i . e . )  use only mesh pofnts  which are within the boundary 
and estimate the inf'luence of the boundary on the neares t  
i n t e r i o r  mesh poin t  by in te rpola t ion ,  f o r  example?; o r  w e  
can modify our difference equation f o r  i n t e r i o r  po in t s  t o  
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account f o r  different mesh length, ne the b 
Let us assure that we take the former method. 

30 

undary. 
Then we 

If  ( k a x ,  j o y )  is  an have the following formulation: 
i n t e r i o r  po in t  , 

I 

= fk, j '  Vk, j-1 - 2Vk ,j * Vk, j+l  

If knx ,  jny i s  a boundary point ,  then vk ., is  known. 
--3 U 

Most of the e f f o r t  i n  research involving (4.15) is 
in  f ind ing  methods f o r  solving the r e s u l t i n g  l inear -sys tems.  
However, it is  easy t o  prove convergence of (4.15) as 
follows : 

Observe that if f > 0 f o r  a l l  k , j ,  then the maxi- 
k,J / 

is  assumed on the boundary. The proof is  by 
kS3 

mum of v 
cont rad ic t ion ,  Suppose the  maximum is  i n t e r i o r .  Then, 
i f  it is  a t  the poin t  k,j, the left-hand side of (4.15) is 
l e s s  than zero. Then (4.15) is satis- 
f i ed  only i f  both s i d e s  a r e  zero. Extending considerat ion 
t o  the  boundary poin ts  and noting that (4.15) expresses 
the f a c t  that v 
poin ts ,  it is c l e a r  that  the  m a x i m u m  of v cannot 
occur i n  the i n t e r i o r  of R without a cont rad ic t ion .  

But f(x, y> 2 0. 

is an  average of its f o u r  neighboring 
k4S 

k J  

S L m i l a r  r e s u l t s  follow f o r  f c 0 i n  R.  We conclude 
k9 j  

must occur on the boundary. These r e s u l t s  
k , j  

t h a t  Nin v 
already imply the exis tence o f  a so lu t ion  of the equations 

7 3 1  
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(4,15). We have  a l i n e a r  system of equations i n  as many 
unknowns f o r  wh9ch e i t h e r  there is  always a so lu t ion ,  o r  
there exis53 a n s n t ~ i v f a l  so lu t ion  of the homogeneous 
equation, But there is no such n o n t r i v i a l  solut ion,  i n  
view of the above results. 

If the funct ion f ( x o  y )  changes sign, l e t  

which i s  defined everywhere, We f i n d  that  

(4017) A h W  = 1, 

1 I and v be a so lu t ion  of n h v  = f .  
k3,J 

L e t  F = Max f Then 

which implies that  Max (WE’ - v >  occurs on-the 
boundary, But Max (v  ) & (r2/4)F + Max 1.1 , where r 

bdY k,j 

is a t  least the  radius of the smallest c i r c l e  which en- 
c loses  R.  Similarly, we can 
and hence Max 

I s  assured, 

show that  A h ( v  - WF) 
4- Max [ V I  , and convergence 

0 ,  

bdY 

V. lnvession of a Natrix. - -- 

I n  general w e  have large matrices t o  inve r t .  How do 
w e  i nve r t  them? Let u s  write a t y p i c a l  matrix i n  a par- 
t i c u l a r  s t ruc tu ra l  f o m .  This w i l l  be s i g n i f i c a n t  
fo l lows ,  Write the matrix TI = (viJ as a vector :  

7 3 2  
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i.ee, we arrange everything by lines. V is the vector 
of unknowns in the jth line of any of the typical linear 
systems discussed above. 

3 

Then the problem takes the form 

where A is a matrix, V is the vector of unknowns (5.1), and 
k is a vector of known values arising f m m  the boundary 
conditions. 

The matrix A has the following structure: 

( 5 . 3 )  

A =  

Dl F1 0 
*2 B2 F2 

= D + E + P .  

It is a block tri-diagonal matrix, which can be written as 
the sum of three matrices, D, E, and F, as in (5.3). 
matrices D are agafn trf-diagonal, and therefore are par- 
ticularly easy to invert, 

The 

J 

An iterative method for finding the solution of a 

7 3 3  



Special  Computatfos, Esrercedures 

problex aasit-ken in the form (5.2) i s  t o  write 

33 

assuming the  P - l  is e a s i l y  inverted and A is  nonsingular.  
( 5 . 2 )  becomes 

and we obtafn  an i t e r a t i v e  equation by placing supe r sc r ip t s  
as shown: 

If we define the  e r r o r  E = V (  - V, (5.4) and (5.5) 
give 
(5J2 

Prom t h i s  f t  follows that the i t e r a t i v e  method w i l l  be 
convergent f f  Max 1 1 [ 1 for a l l  
valuFs o f - P - l N ,  - which is  equivalent t o :  For a l l  such 

which a r e  eigen- 

The value of if e i t h e r  of these  conditions is  
11 s a t i s f i e d ,  enables us  t o  est imate  the  

methods of i t e r a t i o n ,  Suppose we have two i t e r a t i o n  
schemes: a >  A = Po - No w i t h  e r r o r  Eo g y )  and A, = 

cos t ”  of a l t e r n a t i v e  

Max \eigenvalue of PilNo land b )  A = P1 - N1 w i t h  e r r o r  

E i v d  and h, = Max I eigenvalue of PY’NJ. Then it can be 
shown t h a t  
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Then, taking the logarithm of ( 5 . 7 ) ,  

which te l l s  us how many i t e r a t i o n s  it would take t o  accom- 
p l i s h  a f ixed - ra t io  decrease i n  the norm of the e r r o r .  
It is  therefore  important t o  be able t o  estimate the value 
of A .  

To apply iteratfon t o  c u r  probleiii, write P = li and 
N = -(E C F)$ and we obtain.  w h a t .  is known as the Jacobi  
block i t e r a t i o n  method: 

(5 .9)  

As an a l t e r n a t i v e  but c losely related method, consider 
the Successive Over-Relaxation method -- S.O.R. Here 

1 P = w ( D  + WE) 

whereCc) is some real number. T h i s  gives  the i t e r a t i o n  
scheme 

The major problem i n  eaCh of the formulae (5.10) and (5.9) 
fs the inversion of the D J ’  

7 3 5  
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There I s  a re l a t ionsh ip  between the eigenvalues 
associated wi th  each of the above methods which is  shown 
in the following: 

Theorem: Let > = Max 1 eigenvalue 
l e t  /u = Max I eigenvalue of S , O , R .  

of Jacobi  method and 
method I. Then 

I 

A arises as a root  of 

nD1 F1 

*2 ho, 

0 

i s  a root  of 

P E2 

0 

F2 

F1 0 

0 Fm-l 

Foming the matrix 

7 3 6  
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d 2 

. 
0 

(0') 
and computing I T 
(5.121, we obtain 

36 

where Q is the determinant 

0 

which we call Q0. 

If we put o( 2p = 1 and compare this to (5. ll), we have the 
result stated in the Theorem. There are two interesting 
cases to consider in the S . O . R .  Method. 
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Case (i>. UI = 1, Then / I =  h2, and the  S.O.R. 
method is seen to be super ior  t o  Jacobi  because a )  the re  i s  
a reduced computer s torage requirement, and b) t h i s  method 
is  approximately twice as fast as Jacobi,  i n  view of (5.8). 

Case (if). f~) = optimum value = Wb and is  such that  
L- 1 i n  general .  

P O P t  
L 1 4 Wb - 2 ,  T h i s  gives  

Mow f o r  the  f i n i t e  d i f fe rence  equation f o r  t he  La- 
placfan operatorg A i s  p o s i t i v e  d e f i n i t e ,  and D_.bs’pdsi t Ive 
d e f i n i t e ,  Thus the  Jacobi method eigenvalue 

o r y  i n  terms o f  the  r e s u l t s  f o r  general  i t e r a t i v e  methods, 

and, s ince we know (NX, X >  > 0, the method i s  always 
convergent. 

To concludeg l e t  us consider t he  a l t e r n a t i n g  d i rec-  
t i o n  method, discussed e a r l i e r p  as appl ied t o  the e l l i p t i c  
equa$fon 

Let us define the  matrices H and V such that 

Then equation (4.14) can be wr i t t en  i n  the form 

738 
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(exH + 8 V ) X  = K, Y (5.13) 

38 

and X is  a vector  of unknowns. W r i t i n g  (5.13) as 
(H1 + Vl)X = K, w e  s ee  our aim is t o  i n v e r t  the matrix 

H1 + V1, a p o s i t i v e  d e f i n i t e  matrix, and H1 and V1 are 
p o s i t i v e  d e f i n i t e  themselves. To do th i s ,  put  

( H ~  + rI)vm+1’2 = (rI - v,)um + K 

w i t h  r > 0. The t r u e  so lu t ion  satisfies both of these 
equations f o r  any value of  r. In f a c t ,  w e  could change 
r a f te r  any two cycles.  The e r r o r  satisfies 

The dominant eigenvalue o f  Wm can be estimated i n  two par- 
t i c u l a r  cases,  

Case I. If the region R i s  a rectangle ,  H and V 
commute, and thus every eigenvalue of Wm is  of the form 

which i s  always less than or  equal t o  1, s ince  each factor 
i s  less than one, 

Case II. If R is  not  a rectangle ,  w e  must fix the 
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value of r, which f i x e s  the  value of W. 

has the  same eigenvalues as W, but 

39 

Then 

The t e r n s  i n  both brackets commute separa te ly ,  and thus 
w e  conclude9 as above: The method is convergent. 
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Introduction 

The n-body problem is  generally concerned with the motion of masses 
ml, . . . , mn ( n  71) , maving i n  i n e r t i a l  spece under the a t t r ac t ion  of 

t h e i r  gravi t ional  forces. 

upon by mass %, we illustrate the  geometry i n  Figure 1. 
I n  the case of a p a r t i c l e  m being acted 3 

With posi t ion vectors r and r+> the d i f f e r e n t i a l  equation of 
t h  -3 

motion due t o  the force on the jth pa r t i c l e  by the k mass is 

n 

assuming the i n i t i a l  posi t ion and veloci ty  are given, i o e o ,  r+ (0), 

v (0) and r 7-0, w e  seek a solution of (1) To realize what const i -  

t u b s  a solut ion to  a d i f f e r n t i a l  equation, r e c a l l  the problem 
4 c  j k  

where w e  seek a solut ion such t h a t  yo = g ( w )  f o r  a predetermined 

point  and i n  general y = g(x, c ) ,  Obviously t o  f ind c w e  solve yo = g(x,, c ) ,  

4 - .  7 4 5  



Introduction 2, 

However, i n  actual i ty  we solve g(x,, y, C )  = 0, with g(xo9 yO9 c)  = 0.  

Solving for  c we find an implicit  solution re la t ing  x and y e  For exm- 

ple, consider 

XY 
9 

9 2 x + y e  xy cos e 

dx x e q  s i n W +  1 
t 

with solution 

2 x + s i n  e- + y =: c. 

The l a t t e r  equation is  a solution i n  the sense tha t  i f  it i s  differen- 
tiated you get the former. Actually such a solution serves no useful 

purpose unless there ex is t s  some transparency tha t  makes it more use- 

f u l .  

Further, assume there ex i s t s  a set of d i f f e ren t i a l  equations 

with i n i t i a l  conditions x(0) and y(0) given. 

solutions x I: x ( t )  and y = y ( t )  sat isfying the d i f f e ren t i a l  equations 

and the i n i t i a l  conditions. Simple division of these equations e l i -  

The problem i s  t o  find 

minates the variable t and yields  - where y = g(x) Here - h(x, Y) dx 
we have managed t o  reduce the system by one, and there i s  a chance t h a t  

i f  the solution is  transparent the reduction i s  useful. 

cians were led t o  look fo r  integrals  t o  systems of d i f f e ren t i a l  equations. 

Returning t o  equation (l), the idea i s  t o  reduce it t o  a system of 

f irst  order d i f f e ren t i a l  equations of the form 

Thus mathemati- 

fk(x, .9 xn) , where k = 1, . m , 5 = \ ( t )  (2) d”k - =  
d t  

74;  
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Introduction 

and ~ ( 0 )  given fo r  k = 1, . . ., m. 
m = 6n, 

The order of (2) is  6n, with 

Assune f ( 5 ,  . . ., xm, t )  is an in t eg ra l  of the system if  

every solution of the system gives 

where the constant is  determined by 

f [ 5 ( t ) ,  . ., xm(t> ,  t] = f [ i n i t i a l  values 1 

fk [ y ( t ) ,  ., xm(t) ,  t ] = f [ i n i t i a l  values , k = 1, 1 

3. 

(3)  

. ., m, 

there e x i s t m  equations i n  n unknowns f o r  which we can solve \ = 
$ ( t ,  init ial  conditions), and the problem is  solved in terms of t 
and the i n i t i a l  conditions. 

I l l u s t r a t i v e  Central  Force Problem 

Consider the 2-bcdy problem, n = 2, 12 in tegra ls ,  w i t h  masses 
moving i n  a field subject t o  the inverse square l a w .  

r 
@ - - T # f  , o r  

r 
I .  - --ex * 

r 

Note: 1 - 1  f 
' Y  

1x1.. r e 

3 4 ' 7  



Central Force Problem 

Using Laplzce’s method, (4)  becomes 

.- 
Since x r = 0 and 2 x = l ~ )  we have 

( 3  integrals)  

Integrating the extremes of ( 6 )  and ( 7 )  , we have 

v x h  - -  r - 
- + e = -  

P r -  

( 3  integrals)  

( 2  has 3 components). 

4. 

( 5 )  

However, the problem i s  not  complete since 

fk (xl, e . ., xn> has solutions of the form d”k - =  
d t  

fk(xl, . . ., xn, t) = constant, 8 

and there exis ts  a t  l e a s t  one function in  which t appears expl ic i t ly .  

7 4 8  
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Central  Force Problem 5. 

But the  6 in tegra ls  i n  (7) and (8) contain no such function, implying 

- e and - h are not independent of each other. That is, 

e h = O=$elhl + e2h2 + e h = 0, 3 3  - -  

Thus, i n  fact, (8) y ie lds  but  2 integrals ,  with the s ixth,  the time 

of per ihel ion passage, s t i l l  missing, 

Returning t o  the o r ig ina l  problem of 2 bodies, with ne i ther  

body at  the origin,  w e  have 12 integrals  for the  system 

Adding (9) and ( 10) y ie lds  

. I  

mlLl + e2 = o . 

(9) 

1 Define r, (center  of mass) = 

r = 0. 

ing. 

( ~ 2 ~  + w2), and M = y + 5, so t h a t  .. 
This last equation indicates the center  of mass is  not  accelerat-  

13 
Integrat ing t o  get the veloci ty  of the  center  of mass, 

v = Q  ( 3  integrals ,  conservation of l i nea r  momentum) - c : -  

-c r = 1% + k ( 3  in tegra ls )  

7 4 9  



Central  Force 

m l  (21 

Problem 

.. e* 

x r ) + m2 ( r  x L ~ )  = 0 .  -1 -2 

6 .  

Integrat ion yields  

Now multiply ( 9 )  by *El, (10) by .i2 and add. 

m m  
0 ** d 1 2  .. 

Integrating, we have 

m m  

12 
+ E. (1 integral ,  conservation. of e n e r a )  h (rnlv: + m2v2) = 7 (13) 2 

2 

Subtracting ( 9 )  from (LO) t o  get  the equation of motion of the 

second p a r t i c l e  with respect t o  the f irst ,  we have 

e. .. ml + m2 r 2 - r  -1 = -  3 (r, - r,) * 

5 . 2  

Let 2 = r - r and /L = ml + m2 so t h a t  (14) becomes -2 -1 

a. 

- .=-e - r (Central  force problem) 
12 r 

750 

I 
I 
I 
I 
I 
1 
1 
I 
I 
I 



I 
I 
1[ 

I 
II 
E 
I 
R 

I 
E 
I 
t 
4 
I 
I 
a 
E 
I 

a 

Central Force Problem 7 .  

Since w e  now have more than 12 integrals,  some m u s t  be redundant, and 

can be reduced t o  the following: 

v x h  - r 
- + e = -  

- 

(3) 

(3) 

(3) 

(2) 

Returning t o  the problem of the time of perihelion passage, 

operating on both s ides  of the last equation i n  (16) by 'r w e  have 

which can be rewritten as 

A 
1 + e cos 03 r =  

which i s  the polar  equation of a conic section with major ax is  along 

5, and the angle between e and L. 

7 5 1  



Central  Force Problem 

Finally,  squaring the last equation i n  (16) we have 

8. 

"his is  the  conservation of energy statement, with hyperbolic motion f o r  
2 

e2 7 1, parabolic for e2 = 1, e l l i p t i c  for e > 1 and h f 0 .  

Since l a * k 1 2 +  l a x k l  = a s 2 ,  subs t i t u t ing  2 and v_ w e  have 

2 r2G2 + h2 = r 2 2  v o r  L ( >2 + 3 )  = ~ + +  E .  
2 

2 
But v, = 2 + E i s  v a l i d  even i f  h = 0, since r - = ~?$- r. 

r 

Without integrat ing,  (18) shows 

w e  have 2 Multiplying (19) by r , where r = 

&h2 g p r + E r  2 
2 

From (20) w e  see t h a t  i f  r - 0 ,  *h = 0 .  

a l l  bodies cannot co l l i de  simultaneously unless the t o t a l  angular momen- 

tum i s  0 .  

I n  the n-body pro3lem, 



Central  Force Problem I 9. I 

2 
Multiplying (18) by 2r and simplif'ying, we have 

(21) 
2 

(r;)2 + h2 = 2 ( p r  + E r  ) 

kt r = a ( l  - e cos(13) so t h a t  t = to + c( u) - e s i n  d ).  (22) 
(22) shows t h a t  r and t can be expressed parametrically as functions of 

ul. 

However, using an analyt ic  approach, l e t  

' d r d  r c -  - 
d p  at 

so (21) becomes 

2 2 
(r y) ( @) + h2 = 2 ( y r  + Er ) . 

Let (r 2) z 2  = k and change variables so t h a t  - dr f 0. ( r '  = %) dr- 
Differen t ia t ing  (23), 

2 2k r'r'' = 2 p  r '  + &Err ' ,  and 

k r" I: 2p + 4Er, with solution of the form 2 

r = A + B c o s p , k =  I 2 E I .  

1 To f ind  t as a function o f p  , e = k, o r  d t  = I; r d p ,  so that 

I n  the three body problem, e i t h e r  

7 5 3  a; .. * 



Central  Force Problem 19. 

a )  none of the  bo6ies c o l l i d e .  ( h  f 0 )  

b)  two bodies co l l i de .  ( h  f 0 )  

c )  all three c o l l i d e .  ( h  = 0) 

If two col l ide ,  introduce appropriate time var iab les  such t h a t  there  

e x i s t  solutions without s i n g u l a r i t i e s o  

t /u=j u d t  

Problems : 

1) If  h = 0 ,  f ind  the  time of co l l i s ion  i n  terms of the i n i t i a l  

conditions fo r  t h e  2 body 2roblem. 
1 2) Assuming - 
r 

3) Define U = 

law, show co l l i s ion  can occur even i f  h f 0.  3 

and E<(>, h f 9, prove 

7 5 4  



Lecture Two 

Recalling the equation 

( r r ' ) 2  + h2 = 2 p r  + 2Er, where 

k 2 r t 2  + h2 = 2 p r  + 2Er2 . 

11. 

Differen t ia t ing  (2)  and dividing by 2 r '  y ie lds  

(3) k r " = p  2 + 2Er . 

2 =P' so that For the case where E = 0 i n  ( 3 ) )  arbitrarily choose k 

k r" =p  
2 

a n d r = e +  . . Y  ( 4) 2 

t = ? & + .  . . , 

and w e  obviously have parabolic motion. 

For E(O, choose k2 = 2 IE  I yielding r" + r = #$j 
k 

mus r = + + A  cos (w - B). 
k 

Since k = 1%' , choose B = 0 so. we have 

r =A + A c o s f i  
k 

(. 

= /1x + sinP- (Note: t = / r d p  .) 

(5) 



Lecture "wo 

For E 7 0 ,  choose k2 = 2E, yielding f i n a l l y  

r ,  r = + A  cos h 
k 

12 e 

t = s i n  h / L c  ( 9 )  

L e t  us now discuss tvo  basic  problems of i n t e r e s t  i n  the  two body 

pro5 l e m  : 

1) For those o r b i t s  i n  which the msscs a r e  separat ing as t+@, 

how large i s  r? 

2) 

small i s  r? 

If h = 0 ,  and f o r  some t b e  t = a co l l i s ion  occurs, how 

Considering these problems In the order presented, from 

tl. NOW consider the pro3lem when h = 3 and c o l l i s i o n  occurs a t  t = 

I n  short ,  i n  what way is  r r e l a t ed  t o  ( t  - t) as t-tl. From 1 
*2 

'x. = e , multiplying by and integrat ing,  w e  have 5 = e + E. 
X 

756 



Lecture Two 

Multiplying now by x and taking lim, we f ind  
X-0 

lim A2=2/LL 
x+o 
t+tl 

Assume there  e x i s t s  an c( such tha t  x -(t, - t)Q . Subst i tut ion i n  

A further in te res t ing  property (Bertrand 1873) s tha  

13 

one has a 

p a r t i c l e  i n  a c i r cu la r  o r b i t  and the  i n i t i a l  conditions are changed, 

only the  inverse square l a w  (*) and the l a w  ( F r )  w i l l  y ie ld  a 

new closed o r b i t .  

would move i n  e l l i p t i c  o rb i t s  with the sun a t  the center,  and with 

a cannon period. 

r 
I n  the s o l a r  system under a /LCr l a w ,  the planets  

Let  us now discuss the n-body problem under an a r b i t r a r y  l a w  f( r) . 
The equations of motion become 



Lecture TWO 

r .  - .- 7 
n .. 

14. 

c 11) 

If f(r) i s  a rea l ,  ana ly t ic  function, f o r  each r = r i' there  e x i s t s  

a power se r i e s  expansion of f(r .)  1 i n  the neighborhood of ri which satis- 

f i e s  (11) and the  given i n i t i a l  ccnditionr; and is unique. 

(11) over all values of k, 

Summing 

n 

Again using the concept of the mass center ,  with 

note & E s, - P but  (13.) i s  unchanged, so we have 
-c 

n n 

The order of the  system has now been reduced t o  6n - 6. 

If f(r) = r, (11) can be reduced t o  

r. zk = - ek , k = l,...' n.  

(13) implies a l l  the masses s a t i s f y  the same d i f f e r e n t i a l  equation, but 
fails  t o  recognize t h a t  perhaps two of the masses may c o l l i d e .  

(13), the  motion i s  e l l i p t i c  or l i nea r ,  and 

From 
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Lecture Two 

I 
I 

r -k = A+ cos U t  + B+ s i n  c ~ 3  t, 

For the s i tua t ion  f ( r )  = 

(11) ceases t o  be analyt ic  a t  

For n > 3  the problem remains 

where n = 2 or  3, i f  the solution t o  1 

r some time t = tl, a co l l i s ion  has occurred. 

unsolved. 

- 
2 

/ 

tl' However, Painleve has shown tha t  i f  i n  some f i n i t e  t i m e  t = 

a s ingular i ty  occurs, then 

distances r . n(n - 1) where we have -jk 

Returning t o  (ll), crossing by r and integrat ing we f i n a l l y  get  -k 

n 

n n 1 5% = 0. The system has now been 

k=1 
c = O 

subject  t o  

k=l  

reduced t o  6n - 9.  

For the f i n a l  reduction, define ,U ( r )  such t h a t  p ' ( r)  = - f ( r )  . 
Form the  self po ten t i a l  

U =  1 G j L k I n  m j % p ( r j k ) *  

Relating (16) t o  (ll), we have 

I 
1 
1 

< 753 



Lecture Two 

.. %G = gra$U . 

Multiplying (17) by and integrat ing,  

16. 

(17) 

n 

2 
k= 1 

(Conservation of energy) . (18) 

To specify the constant,  and reduce the system t o  6n - 10, f o r  

r -  

r r  
f ( r )  = r , l e t  /Lc (r) = f ( r )  d r  

I 
I 
I 
I 
I 
I 
I 
1 
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Lecture Three 

- 8  

To obtain the Lagrange - Jacobi form of I, r e c a l l  t h a t  

k=l 

and d i f f e ren t i a t e  . 

k = l  

n n .- 
But 1 & = & *  gr-U, so we have 

k = l  k=l  

* -  n c &'gra4rU ' 
I = - +  

k=l  

A function f(xl, . . . ,x ) i s  homogeneous of order k if there e x i s t s  O< 
such t h a t  

m 

Different ia t ing ( 3 )  with respect t o  A 
get  

and l e t t i n g  h become 1 we 
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Lecture Three 18. 

but t h i s  i s  precisely the expression f o r  the coordinates in  (2)  i f  

U i s  homogeneous of order &. i . e .  

Thus 

r. 

I 2T + 1'. 

- 004 p L.4. 1 

r 
Consider the e f f ec t  of l e t t i n g  f(r)  = p , 

F'rom the previous lecture ,  /cI ( r )  was defined as follows: 
00 

pw = I, f ( r )  dr , i f  it makes sense, which i n  t h i s  case 

depends on the value of p. Allowing f o r  various values of p, 

00 

r 
1 
r -=log - . If p = 1, / L C ( ~ )  = -i, dr r 

Thus, if p <  1 or p > 1, ,Q(r) and consequently U ( r )  i s  homogeneous of - 
degree (1 - p) . (Recall  U = mjmk/CC ( r  j k  1). 

14 j L k < n  
Applying the hornogeniety property t o  ( 6 ) ,  

, P f l *  
1 -0 

I = 2 T +  (1 - p)U f o r  f(r) = - 
rp 

7 6 2  



Lecture Three 

Since T = U + E and U = T - E, (7)  becomes 

W e  are now i n  a posi t ion t o  qua l i ta t ive ly  discuss the relat ionship 

between I, U, T and the general geometry of the problem. 

r”Z 
L e t  0 be the mass center  of t h i s  

three body system, and define 

R ( t )  = m x .  r .  ( t )  

T ( t )  = max. r ( t )  

r(t)  = min. r i G ( t ) l  

Jk 

k 

JL 

where these functions by t h e i r  
very def in i t ion  a re  not necessarily 

ana ly t ic .  The use of inequali-  

t ies  w i l l  enable us t o  relate 

I t o  these new functions. 

k = l  

2 2 
By def in i t ion ,  each r k 5 7 ( t )  

Similarly, 

Combining t h i s  r e s u l t  2 2 %rk 2 m  1 rk ?m 5 where m = min 

with (91, 
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Lecture Three 20. 

(10) 

case 

Inequality (10) t e l l s  us I and $ 

Now how is I re la ted  t o  R ?  An a l t e rna te  form f o r  I, va l id  f o r  the 

where t h e  center of mass i s  fixed, and useful i n  t h i s  treatment, is 

a re  of the same order.  

But with a fixed center of mass, the last term i n  (11) vanishes, and 

k= 1 

Multiplying (12) by m and summing with respect t o  j, we f i n a l l y  get  
j 

1 2 

- L  l C j c k 6 n  mjk 'jk = I 

But from the def in i t ion  of R(t) ,  

I '&R ( t )  1 mjk o r  simply 

I '-AR2( t )  where A is  a constant. (13) 

Applying similar techniques as i n  (10) we f ind  there  are constants A and 

B such t h a t  

7 6 4  
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Lecture Three 

BR2( t) I 'AR2(t) 

21. 

(14) 

2 so I is  of the order of R ( t)  
t +a one of the quant i t ies  I, R o r  

A general conclusion is t h a t  if f o r  
--p-, they a l l  -->d* 7 

Let us now show the re la t ion  between r, U and T for  1 < p < 3 .  
Since r =- r, -C - 

r , and from the def int ion of U, 
r'Jk 

jk - 

It is impossible for a l l  the bodies t o  co l l ide  simultaneously 
after an  i n f i n i t e  time. 

i .e . ,  all r,,O implies R ( t ) + O  f o r  t-4. 
To prove this statement, assume the contrary, 

1 .. r 
I __)oo a t  some time ? 7 0. 

r j 0 implies - - which implies ?+". If 
For s implici ty  l e t  

.. 
I > A  for  some t and with A >  0. 

? 7 A , integrated twice, yields 

A,t2 
1 7 ~  + C t + C 2  i D 

But (16) tells us t h a t  I -00 which implies R-poo from (13) 
But t h i s  is  contrary t o  our hypothesis. 

7 6 5  



Lecture Four 22. 

Consider the problem of less than n bodies co l l id ing  after some time . 
1 t = a.  

impossible for a par t icula5 p a i r  of masses t o  co l l ide  as t.-pd i f  

L e t  n = 3> f ( r )  = . Then Chazy proved (1923) t h a t  it i s  

m2 there e x i s t s  a quant i ty  d > 0 such 
t h a t  both remaining distances a re  

always greater  than o r  equal t o  6 . 
i . e . ,  

there e x i s t s  6 such t h a t  r and 

r31 

-f,Oast----)-if 5 2  

23 

Figure 1 

Pollard Theorem: 

Recalling the def in i t ions :  

Then for  n = 0, r(t)  -+PO as t -4 . 
Proof: Assume r 4 0 .  This implies there 
ex i s t s  an r -0 f o r  some par t icu lar  j 

and k .  If no pa r t i cu la r  p a i r  becomes and 

remains the minimum pa i r ,  t h i s  implies a t  
l e a s t  two r a re  a l t e rna te ly  the minimum. 

Let them be rX and r 

exchange positions, i . e . ,  r 

jk 

Jk 
Then when they 

23 

< r23-p 12 

< rZ9 there e x i s t s  a time tm such 
r23 

s > 0 .  

i 
I 
i 
1 
I 
I 

Figure 2 



Lecture Four 23 - 
. But each time they exchange posit ion,  these exists sequence of 

But from Figure 1: r31C r12 + r230 
523 

t h a t  r12 = 

times t fo r  which r l2 = r23. n 
+ m  r 2 > .  (1) 2 

Thus r31(tn)-0. Remember the  form I = & ( m  r 12 I 2  + ?!f23 31 31 
This implies I(tn)----+O as r j k + O .  

I > A t 2 .  

a contradict ion.  

come and remain the  r(t) of our def in i t ion .  

But f o r  r( t)  > 0, w e  have shown 

Following the same logic of yesterday's lecture ,  w e  a r r ive  a t  

Thus i f  r( t) -0, a f ixed r w i l l  eventually be- 
j k  

Frau (1) and previous r e su l t s ,  assuming it is  r t h a t  becomes the I 2  
min. so  r -Os w e  have I 2  

r) 

5 3  7m31* 1 2 + m r ') - > A t L .  Assume ?% (%f23 31 31 

Then 

2 Now le t  us show both r and r a re  grea te r  than some multiple of t - 
23 31 

+ 2 E )2 + r3: )Bt2  ( r31 (3) 

Since ( 3 )  depends on r i .e. 6 -0 ,  (3) can be represented as 31' 



Lecture Four 24. 

23 
The same argument appl ies  t o  r as r= 0 .  Thus both r and r 

increase more rapidly than t. 
23 31 
From 

In tegra te  (4)  between t = tl and t = t2, tl 4 t2' 

0 0  

113 d t  

t2 r 

(4) 

However, Cauchy proved t h a t  i f  there  exists an f ( t ) ,  t > 0 such t h a t  

f(tl) - f(t2)-0 as tl and t2+-, then lim f(t) e x i s t s .  Applying 
t--0 

t h i s  t o  ( 5 ) )  lim v3 ( -)  e x i s t s .  
t+- 

Now l e t  t r o ~ ,  so ( 5 )  becomes 2 

I 
1 
I 
I 
I 
I 
1 
I 
1 
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Dropping the subscr ipt  i n  (6) and integrating, with tl = 1 (a rb i t r a ry  

choice) 

Divicle (7) by t 

C log t; becomes I 

( 7 )  

loa t and ~ - 0 ,  C 

t and l e t  t - 0 0 .  Since 

m r  
Since L m . r  = 0, 

l-i 
1 += 0, the last term of 

i i 

m r  
= 0 vanishes. + ?A + 3-3 

t t 

t-- Ir 

t Assuming r - r -0 and dividing by - -2 -1 

r -1 
I t  m --0. m - -  r 2  

I t  

Combining (9) and (10) w e  nm have 

2 r r 
t 

E2 1 (5 + 5)  , and - a l l  having limits. 

d' 0 ;  

763 
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Since 

2 m r  2 2 m r  , we now have I 11  ? 2 2 +  3 3  
t2 t2 t2 t 2  
- n - + -  

lim 2 I e x i s t s  and i s  f i n i t e .  
t- t 

Frm previous r e su l t s ,  f o r  some t > to and A >  0, 

I > $ + B t + C .  

26. 

2 Dividing by t and l e t t i n g  t -4, (12) becomes 

Since A is arb i t ra ry ,  l e t  A-00; so that 

2 This implies I increases more rapidly than the quadratic t , and contra- 

d i c t s  (11) . Therefore r .+*O as t - . 
I n  the  n-body problem, a simultaneous co l l i s ion  of a l l  n bodies 

implies t h a t  the t o t a l  angular momentum is zero. (h = 0). 

Proof: Such a co l l i s ion  implies R(t)+O. We have previously shown 

R 4 0  a f t e r  an i n f i n i t e  time, so there  e x i s t s  a time t = tl< 00 a t  
which the  co l l i s ion  m u s t  occur; but  t h i s  i s  impossible unless & = 0. 

To prove t h i s  last  remark, r e c a l l  

, 
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n 

h = 1 - I C +  
k=l  

% (r x v ), so tha t  

- -  'E ?crkVk 
k 

Since it is true that 

(13) can be wri t ten as 

C 5r; C %vk 2 = 4 I T. I" l 2  k k 

Using T = ? - E, (14) beccanes 

I 

Integrat ing (16) i n  the neighborhood of tl, 

27 

But a t  some time tl, 1-0, and R-0 :=>r-O. 

?-0 implies t h a t  a t  some time ? > A  > O .  

t m u s t  be concave upwards. 
t i p ly ing  (15) by - ?/I, 

Similarly 
So the  p l o t  of I vs. 

But this means i C  0, or - i > 0. M u l -  

'2 h2 log $ 5 4EI - 21 + IC. 
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*2 1 1 But 21 i s  negligible, my log - & s o  is eventually > 0. 

Dividing (17) by log f' 1 

f o r  tNtl . 2 4EI + K 
1 log - I 

h &  

Now as t - t the  denominator-----.+oo, I 0 and the numerator - K. 1' 

Thus h2-0 as t,tl, or  

the t o t a l  angular momentum vanishes i f  these exists a'simultaneous 

co l l i s ion  of a l l  masses. 

7 'i' 2 
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Tauberian Theorem and Condition 

Consider the problem of a given function f (x ) ,  x > 0 such t h a t  

= A, and let  us question i f  it is true 2 f(x)-Ax , i.e., l i m  

t h a t  f ' ( x )  -*. 
x 4 -  x 

The converse statement 

2 f ' ( x )  -2Ax .=> f(  x) -Ax is  true, but  it is  not necessar i ly  
true t h a t  given an asymptotic function, one can d i f f e ren t i a t e  with 

the r e s u l t  an asymptotic function. It is  t h i s  i r r e v e r s i b i l i t y  t h a t  

led t o  the concept of the  Tauberian condition, which i s  t h a t  addi t ional  

information required t o  obtain r eve r s ib i l i t y  i n  the abwe limits. 

lim 
X- 

= A --)there ex is t s  )O and an xo such t h a t  

Multiply (1) by 2x, in tegra te  w i t h  respect t o  xp  divide by x2 and l e t  
x--. 

Since is arb i t ra ry ,  l e t  -0 so (2) becanes 

2 Now, t o  show f(x)-Ax :=>f'(x)-2Ax we must introduce a Tauberian 
condition. 

7 7 3  
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Landau Theorem (1906) 

30 ' 

2 Case 1. A = 0 .  If f ( x ) N A x  , and f " (x )?C  - 00, then ft(x)-2AX. 

Consider f ( x  + 
with a remainder, up t o  second order terms. 

1 
E x ) ,  e - 2 - 0 ,  and i ts  expansion i n  Taylor s e r i e s  

Using Landau's Theorem i n  ( 4), 

c .  € 2x2 
f ( x  + f x) ,> f (x )  + €xfp'(x) + 

2 Dividing ( 5 )  by x and taking l lm as x - 4, we have l e f t  

C .  €2 - € f t ( x )  + - 
2 01. l i m  

X 4  

I n  ( 6 ) ,  f o r  I$ > 0, divide by and l e t  0 so (6)  becomes 

( 5 )  

I n  ( 6 ) ,  f o r  I$ < 0, divide by , ( reverse  inequal i ty)  and (6) becomes 

- lim f l ( x )  2 0 .  
x+- x 

f'o= 0 
lim 2x 

X- 

7 *; 4 



The same conclusion can be reached for f " ( x ) <  C < 00 by using 

-f for f i n  the above argument. 

2 Case 2.  A f 0 .  Define g(x) such t h a t  g(x) = f (x )  - Ax , so t h a t  

The hypothesis f ( x ) N A x 2  -=) d d - 0 .  
X 

But the argument f o r  the case A = 0 now appl ies  t o  g''(x)s so 

= 0 .  g'lx)  lim 
X--roo 

By def in i t ion ,  g*(x> = f * ( x )  - 2 ~ x ,  so t h a t  

Using (10) and (11)9 f ' ( x ) - M  

If a system i s  bounded in  s i z e  and velocity,  then 0th t 

c 10) 

e kine .c 

energy arid poten t ia l  energy have limits i n  the average sense. i .e .  

t 
R U = l h l  U d t = - 2 E ,  

t- 



Lecture Five 

t 
A 

T d t =  - E .  
t+oo  

(Class ica l  V i r i a l )  . 

32 * 

Proof: If (12) i s  true, (13) follows, since 

A 

T = U + E, and since E i s  constant is  equal t o  i t s  average value.  

Thus T = U + E. 
of energy. 

A h  A 

I n  words, T is  redundant i n  view of the conservation 

Now t o  es tab l i sh  (12) Begin with the Lagrange - Jacobi i den t i ty  
e. 
I = U + 2E, integrate  once and divide by t .  

4 t 
- -  t t  [ U d t + 2 E + C  t '  

# n 
Remembering I = 1 
r+ and v I i s  bounded i n  time. Thus, as t-m ------bo, 

% (r+. v+)> from the hypothesis of bounded 
k=l  

0 I 
, t  

-09 and t 

t 
u g -  " 1  

t i U d t  = - 2E. 

' 0  

However, the f a c t  t h a t  i s  some cases, i . e . ,  parabolic case of the two 
body problem, U A = - 2E ( = 0) even for  an unbounded system, ( P - t 2/3) 

Pollard has developed a stronger theorem. 

Pollard Theorem [f(r) I $1 
A necessary and su f f i c i en t  condition t h a t  U e x i s t  and equal - 2E 

= 0, In  other wordsj i f  the system is bounded (note:  is  t h a t  - l i m  
t- 
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4 
ve loc i ty  not involved) m d O  and U = - 2E. 

I I F i r s t  l e t  us show --0 2 -0. 
t t We have already shown 

t 

If l i m  = 0, then lim JiA . 
X-4 X+@ x 

Applying t h i s  t o  functions i and I9 

To prove the  reverse of ( 14), w e  already how that i f  

lim = 0 and f"(x) 2 C > - 00 then l im  f'o= 0. 
x-- x X*- 

Thus w e  need t o  show only t h a t  'I' 2 C 7 - 00 . 
.. .* 
I = U + 2E 2 2 E  > - 00 . Thus I may be integrated t o  ge t  

I I i: h 
l i m - - O .  Thus U = - 2E i f  and only i f  ----,O or  

t2 t t t-+@ 

But e a r l i e r  w e  es tabl ished t h a t  

- d L < A -  B R ~  R2 ~ 

2 - t2 t2 t 

Thus R 
t and -+O. I R2 

t t2 
k.~m t h i s ,  if 2-09 - 
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1 A P u =  - 2E i f  and only i f  lim = 0, or  
t-oOO 

I 
t-- t 

lim - = 0 ,  or 2 

lim+ 0 .  
t40" 

A 
Theorem: I f  T ex i s t s  and equals 0, then E = 0.  

h A A 
Proof: T = U + E, so i f  T ex i s t s ,  so  does U and T = 0 by hypothesis. 
Thus 

A h  A 
T = U + E ,  o r U = - - E E .  

A 

But U >O, so - E 2 0  o r  E G O  

From ? = T t E, integrat ion once 

t 
C T d t + E + -  t '  t t  

0 
J 

A s  t--, if T 

Integrat ion of t h i s  

and division by t gives 

C = 0, the in t eg ra l  i n  (16) must vanish, as does ;. 

E so I - E t .  ( 17) 

asymptotic function gives 

I - ~ , o r  E t 2  

I E  l i m  - = - 2 2 -  t-?-t 
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But I > 0,  so E > 0. Combining t h i s  r e s u l t  with (15) we have 

E = 0 .  

Incidentally,  the theorem i s  true for  a l l  p f 1. What happens i f  

E <  01 Since T = U + E, and T20, by hypothesis 

U + E > - O  o r  U ) , - E .  

A Thus 

r is bounded but  the maximum could conceivably -00 . 
U ,Z IE 1, but  A ;+U, ~0~2-1 r E I *p-,>r. If E ( 0 ,  
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Theorem: If E > 0, n = 3, a p a r t i c l e  escapes. 
' 2  Lemma 1. 4EI  - I C as t+- . F r o m  the Lagrange - Jacobi 

equation jt = 2~ + U, w e  conclude i - 00 as t - gc 
time i becomes posit ive,  and define t h i s  as i (0)  

mus ,  f o r  some 
*e 

By integrat ing I, 

t 
U d 7 + 2 E t + i & ,  o r  

Multiplying (1) by 4E, we can write 

t 

0 J 

;2 > 4E2t2 + 4Et  U( 7 )  d 7  + 4 E k t .  

Reversing the signs (and sense) of (2)  we have 

4EI - i2 < C 

Define J = 1 mjkrjk,  where we now know 

is j & $ n  

BR < J < A l l j k  
Jk 

1 
UJ Lema 2.  l i m  - = e x i s t s .  

t- 

7 d  o 
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Different ia t ing ( 3 )  with respect t o  time, 

37 

1 1  C 
r Sk 

B u t  r 2 r by def ini t ion,  so r I I; . From (4), with - < U 
Sk 

Square ( 5 ) ,  use Landau's inequality property and note t h a t  i n  the expan- 
sion of I 1' w e  get  8 middle term 

m r = - 4i2. -2 
"jkrjk'jk 1 PQ PQ P9 

Thus ( 5 )  becomes 

Division by U 5 5  J , 

But - 1 GCr, so y 1 c  < E . Thus 1 C r  R < C .  This implies - 1 is  bounded, 
U UJ 

and w i l l  be dropped from (6) .  
J > A t .  

Similarly, I ) A t 2  => J2 > At2=> 

Final ly  (6) can be reduced t o  
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Integrat ion of (7) gives 

1 1 - ' 

t2 

But as t 
bounded, and 

and t2 -00 independently, the r i g h t  s ide of (8) i s  1 

1 1 .T -1im as t-w or l i m  - t 1. U J  
( UJ> t-- 

Assume II 7 0 .  Then, there  ex i s t s  a 6 > 0 such t h a t  

( 9 )  shows tha t  a s  t -00 r- so a l l  the p a r t i c l e s  escape. 

Assume p = 0. 

12 = r. If another r swaps with r each time a new mum, i . e . ,  r 
Then a t  some time, some r (say  r12) becomes the mini- 

3k 
Jk 12' 
. (Assuming r i s  other minimum). 

5-3 23 
becomes the minimum, r12 = 

'3k 
Then r = R.  But 31 

762 
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Division of (10) by R, 

1;- 11 & E. r But l i m ~ =  r 0, which implies I - 1 I 4 0. There- 
t- 

12' fore  there  e x i s t s  a min r ; c a l l  it r 3k 

Introduce Jacobi coordinates 9 and r, where 

mlr, + %%? 3 = r  - 
-3 ml + m2 - 

r - r  - r  - -2 - 

m r  + m g 2 + m ;  = O  
1-1 3 3  

*I 

The above s e t  of equations may be solved t o  ge t  r,, r+ and r 

functions of r. 

as l inea r  -3 
Such a manupulation would show - 

I = A y 2 + B r  2 , 

where A and B a re  functions only of the masses. 

kt r = R, rE = r. men I R  - 5 I r, o r  
23 

But i f  P. = 0, g r 1  G- =>%-l, 5, R. UJ 

Since R act, 3 C t  s o  7 becomes unbounded as t -d . But 

rewrit ing the form f o r  3 , 

783 
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r 

M - - 
3 M - m  E cr . 23 -3 

Since, as t-00 -00, r -00 This means m escapes 5 3 3 
from the system. 

7 d 4  

I 
I 
I 
I 
I 
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Recalling the general equation of' motion 

when f(r 

r ( t)so containing the origin,  which satisfies (1). 

f( r) = 2, e i t h e r  a l l  the rk( t ) s  may be continued ana ly t ica l ly  as 

) is a rea l ,  analyt ic  function there  e x i s t s  a unique set of 
jk 

For the case where 
k 1  

r 
t---)-) or  there  i s  some t i m e  t = t a t  which a t  least one rk ceases 1 
t o  be ana ly t ic .  

problem permits analyt ic  continuation u n t i l  such time t = t f o r  which 

rk ( t ) -O  as t-tl, and t h a t  t h i s  condition i s  both necessary and 

su f f i c i en t  . 

Painlev4 has shown t h a t  the solution of the n - body 

1 

_ _  

Returning t o  the work of Chazy f o r  the case where t--, is 

it possible t o  f ind  estimates for the  growth i n  r(t) with time? 
Consider 

As before, we square both s ides  of (2), reca l l ing  the energy equations, 

to get 

4 161 S C U  T, 

where T = U + E 7 0 .  

7 d 5  

( 3 )  
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If E <  0, from $ <CU and T = U + E, r < B  < 00 . (Note t h a t  i n  all 

these lectures no e f f o r t  has been made t o  distinguish between the var i -  

ous constants, i . e . ,  A, B, C, C1, e tc . ,  since they only depend on the 

masses). Thus we have 

(4)  

If E = 0, T = U and (3) becomes 

L e t u = -  , di f fe ren t ia te ,  and subst i tute  i n  ( 5 )  t o  get 
A 1 5 

3 ’ 2 L C t ,  bu t  r < c  5 from: > u  - 5 -  
2/3 r N C t  

If  E > 0, (3) becomes 

[ f i I < C U  4 ( U + E ) .  

1 Again l e t  U = - , so (7) can be written i n  the form 5 

I -  I 
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I 
E 

1 
I 
c 
I 
1 

Thus 5 S C t  and r < C t 9  so 

r-t. i 8 )  

Since w e  have only worked with Lagrange - Jacobi equation t o  date, 

l e t  us see what addi t ional  information can be obtained from these dif-  

f e r e n t i a l  equations f o r  the n - body case, where E > 0 and P f 0. 

Making use of lemma 2 i n  the last lecture ,  

I >At2=>R > A t ,  so  J > A t .  

1 - > 6 7 0  if  P f 0, so  t h a t  But U J  

Summarizing Chazy's r e su l t s  f o r  n = 3 and ruling out the case of t r i p l e  

co l l i s ion ,  i . e . ,  9 f 0, w e  see: 

E > O  

two r s, say r i 3  
and r wt 

23 

r31ht2/3 I . 
two r s, say r 
and r23-- 

r23N 
r L B  (bdd.) 31 - 

P = O  
i J  

hyperbolic case 

hyperbolic - 
parabolic case 

hyperbolic - 
e l l i p t i c  case 

7 d  -7 
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E t 0  same aS  above 
2/3 a l l  r rvt 13 

two pa r t i c l e s  col l ide,  
the third-oo 

44. 

hyperboLic - 
e l l i p t i c ,  o r  
parabolic case.  

hyperbolic - 
e l l i p t i c ,  o r  
parabolic - 
e l l i p t i c  case. 

Some r i s  nei ther  bounded nor unbounded. 
jk 

Chazy was able t o  demonstrate o rb i t s  of every type above save for  

the very las t ,  but the l a t e s t  Russian l i t e r a t u r e  indicates  t h i s  too 

has now been demonstrated. 

Let us now return t o  the Sundman problem, namely the three body 
problem where h f 0, and show tha t  i f  r-0 as t+tl, t h i s  

corresponds t o  a two p a r t i c l e  co l l i s ion  with the  t h i r d  p a r t i c l e  

moving t o  a def in i te  posi t ion with a de f in i t e  veloci ty .  

If r( t ) 4 O  as t +tl, U +go so y+@ . But t h i s  t e l l s  

us t h a t  the curve I v8. t m u s t  be concave upward i n  the neighborhood 

of t = tl, so 1-L, where 0 < L < @ . We have already ruled 
out the case where I E 0, so we have 0 4 L & 00. 

the 2 par t ic le  co l l i s ion .  

L e t  us now show 

If r -0, a p a i r  of par t i c l e s  co l l ide .  Then one of the distances 

23 
becomes a minimum and remains so. To prove t h i s ,  assume r and r r i J  I 2  

a re  a l te rna te ly  the minimum. itn] , tn+tl where r ( t  ) = r ( t  )+O. But r 
Then there  e x i s t s  a sequence of times 

31G r12 + r23' 12 n 23 n 
-0 which implies a l l  three r -0 along t h i s  sequence of 

so r31 i 9  
t n ' s .  But note t h a t  

.I 
4 
1 
I 
I 
I 
I 
a 
3 
I 
I 
I 
D 
I 
5 
1 
I 
1 
I 
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2 I = =  mjkrjk 9 

I( tn)-O along ,h 

45. 

so 

s sequence. 

W e  have already proved I has a l i m i t ,  so i f  it approaches 0 along a 

p a r t i c u l a r  sequence of times, it w i l l  approach 0 no matter how you 

approach tl. 
Thus only one r 

But this i s  a t r i p l e  co l l i s ion ,  contrary t o  h - f 0. 

eventually becomes and s tays  the minimum. i s  
Now t o  show t h a t  t he  t h i r d  pa r t i c l e  mwes t o  a de f in i t e  posi t ion 

w i t h  a de f in i t e  veloci ty ,  re turn to  the  inequal i ty  0 < L <  e9  and 

l e t  us show we can ru l e  out L = 00 when & f 0. If rU- 09 r23 - 
_- 
131- e 

2 We know QrU -09 so l e t  us assume L = 4 

This implies 

o r  I----+@ as t-tle 

L e t  %3 > m31, so we may w r i t e  

From (IO), i f  r -DO, .-*- since 
23 r31 

7d9 
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simplifying, and neglecting vanishing terms 

This implies '23-4 

m, m, 

2 '  
ml 5 (41 L - + -  r13 2 r23 

46. 

Using (12) i n  (13) 

;.' -0 8.s t-t so 1-31 1 

E has a l i m i t  as t,tl. (14) 3 

Recalling that  if a function has a bounded der ivat ive as t+to, the 

function i t s e l f  has a l i m i t ,  (14) implies 

r +lait as t d l  or  

lim r3(t)  = L. 
3 

1 t-t 

m r  + m & + m ;  S O , &  3 3  However, 1-1 

m r  + m r  -L. 1-1 2 4  

Also, rl2-0, q - G-0 

7 9  0 
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(ml + m& rl-L .=)rl, r2 and r 3 have limits. 

But from (ll), since 1-L we have a contradiction t o  the assumption 
L =  od. 

:. O < L < o ’ o .  

. . .  , . :1 , 

7 9  1 
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Summary of the theorems involved i n  the Sundman problem, where 

n = 3, h # 0, and r ( t ) + O  as t+tl < 00 . 

Theorem 1. l i m  I(t) = L, 0 < L < 00 . 
t- 

Theorem 2 .  Two par t ic les  col l ide and the th i rd  pa r t i c l e  goes t o  a 
def in i te  posit ion with a f i n i t e  veloci ty .  

If v 

c le s  re la t ive  t o  the origin,  then 

and v2 are the ve loc i t ies  of the col l iding pa r t i -  1 Theorem 3. 

2 l i m  r( t )v2  = 
t--, tl 

Theorem 4. The in tegra l  

U( ‘7 ) d r  , converges. ( c f .  h = 0 i n  2 body case). i 
Theorem 5 .  If V - i s  the veloci ty  of ml re la t ive  t o  5, then a t  col l is ion 

2 lim rV = 2 p  . 
1 t-t 

/cc = ml + m2. 

Theorem 6. lim r(r2)fl = 2 p  

1 t-t 

Theorem 7. lim Q I - ‘1 ex i s t s .  
t-tl r12 

That is, the par t ic les  co l l ide  a t  a def in i te  angle. 

I 
b 
I 
1 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
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Proof that i f  f ( t )  > 0, f ( t l )  = o and f " ( t )  0,  then f ' ( t )  d o 

i n  the  neighborhood of t = tlw 

1' A s  t2-t 

where w e  have 

L e t  us expand f ( t )  about t = t2 

i n  a Taylor series up t o  second 

order terms. 

(1) becomes 0 > f ( t  ) + ( t l  - t 3 ) f ' ( t 3 )  , 3 

neglected the second order term, which by hypothesis i s  

pos i t ive .  F r o m  (2) 

(tl - t3)f'(t3) < 0 .  But tl - t 3 > 0 ,  SO f ' ( t  3 ) (O.  

Returning t o  Sundman's problem, consider the ve loc i ty  of co l l i s ion .  

From Theorem 7.2 i n  the 1962 lecture  notes by Pollard,  w e  have 

2 
1 rv 

n a: 
I rV'+ 

ml + 52 2 

Proof: Assme r - 12 - 

, 

as t+tl . 

r, and r eca l l  that 
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U x -  + & +ms 
12 r23 r31 r 

Multiply (3) by r and l e t  t-tl, t o  obtain 

lim rU = m12. 
t +t1 

From ( 4 )  

r(t - E)-rnl2. 

But E i s  constant, r-0, so we can write 

2 
rT+rnl2, o r  r ( m  v2 + m v2 + m v )&al2 11 2 2  3 3  

But v +I -T' rv3--+0, so ( 5 )  becomes 3 

Since the center of mass i s  such t h a t  

(4) 

( 5 )  

mlvl + %v2 + m3v3 = 0, ( 7 )  

l e t  us multiply (7) by p, r e c a l l  t h a t  v -0, fl-0, and com- 

bine (6) and ( 7 )  t o  get 
3 

2 4  > 
2 

ml + 5 N1- 

ml + "2 

2 
2 rv+ 
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L e t  us now f ind  the rate a t  which the  co l l i s ion  takes place.  
c 

Even though r-0, the l im s, i s  bounded. 
t-tl 

.. .. 
so a t  some point  I becomes - 2E, I---+@ as t-tlr Since -NU = I 

a. 

.. 1 
r 

pos i t ive .  Thus, i f  w e  show the existence of a l i m i t  f o r  d 7  , 

w e  have a l i m i t  f o r  i1 ,*. 
Now, 2 I = mlr: + rn r2 + m r 

2 2  3 3  ’ 

Since r and v have limits, 
3 3 

But G v 2  has a l i m i t  froan (8), Gis likewise bounded. 

and cmbining r e su l t s ,  w e  see tha t  

L e t  V = v - v -2 -1’ 

Proof t h a t  r( r 2 ) * -  - 2 ( y  + %), where r 2 i s  the  square of the  vector,  

and 2 = -2 r - r,. 

1 .  7 5 5  
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(r2 - q) + bdd. fcn.  2 m .* 
21 = ,3 

'L 12 

m, 
1 .- z2 = 7 (xl - r+) + bdd. fcn.  

'12 

Subtract (10) from (11). 

r + bdd. fcn.  .. ml + m2 r = -  
3 -  - 

r 

+ bdd. fcn. ,  .. ml + m2 so, 2' 2 = - r 

2 r ( r *  - -  $9 = - 2 ( 5  + m& + bdd. fcn.  

= - 2 ( m  + m2) + bdd. fcn.  + 4 ( m  + m2) + vanishing 1 1 
t e rn .  

Now use t h i s  information t o  f ind  the rate a t  which r-0 as t,tl. 

I n  the two-body problem rIv(tl - t) 2/3 . Can the same be sa id  of the 

three -body problem? 

2 ' *  Different ia t ing r(r ) as a sca la r  function, we get 

2 *2 
Define F = - , where both numerator and denominator -0 as t -tl. r 
Applying L'HGpital's rule ,  

796 
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I 
C 
8 
I 
! 
I 
I 

Thus 

1 t-t 1 t-t 1 t-t 

.'. l i m  F = 2 ( y  + 5) .  
1 t-t 

02 
rr - 2 ( y  + 5)  , or 

But r-0, so (14) becomes 

In tegra t ing  the l e f t  s ide of (15) 
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Non-Periodic Motions ., 1. 

I, Introduction 

Subsequent t o  the  recent  determination of s e l ec t ed  
periodic l i b r a t i o n  o r b i t s  o f  t he  Trojan type (Habe, 1961, 
1962) and of the  corresponding o r b i t s  i n  the  r e s t r i c t e d  
earth-moon problem (Rabe and Schanzle, 196'~)~ add i t iona l  
numerical work has been devoted t o  the study of - non- 
per iodic  t r a j e c t o r i e s ,  i . e @ ,  o r b i t s  devia t ing  from a 
c e r t a i n  per iodic  so lu t ion  by given i n i t i a l  q u a n t i t i e s .  
Such o r b i t  computations have been l i m i t e d  t o  the Trojan 
problem because of t he  g r e a t e r  s impl i c i ty  of these 
motions which a r e  based on the  r e l a t i v e l y  small mass 
r a t io  Jupfter/sun, Also the  -work has been. l i m i t e d  
t o  motions ir, the  plane of the per iodic  o r b i t s ,  and con- 
sequently i n  the  plane o f  J u p i t e r ' s  o r b i t .  A number of 
se lec ted  non-periodic o r b i t s  o f  t he  Trojan type were thus 
obtained i n  cooperation w i t h  J, Schubart, during the 
summer o f  1962, on the  SIEMENS-2002 e lec t ron ic  computer 
a t  the Astronornisches Rechen-Insti tut  i n  Heidelberg. 
An even more extensive and systematic survey of the pos- 
sible f o r m s  of motion was undertaken by A .  Schanzle 
(Dissestatfon i n  preparat ion)  on the I.B.M. -1620 of t he  
University of C:i.ncinnati, f o r  a study of t he  s t a b i l i t y  
c h a r a c t e r f s t i c s ,  

From the  rather numerous t r a j e c t o r i e s ,  some of which 
extend o v e r  t i m e  i n t e r v a l s  of many hundred years ,  the following 
pr inc ipa l  f ea tu re s  emerged rather c l e a r l y .  
i n i t i a l  deviat ions from a per iodic  so lu t ion  with the  same 
value of t he  Jacobi  constant C as t h e  non-periodic o r b i t ,  
t h e  l a t t e r  o s c i l l a t e s  i n  a vine- l ike fashion about the 
per iodic  reference o r b i t  
the order of Jup i t . e r ' s  per iod of o r b i t a l  revolut ion (as 
cornpazaed t o  the  roughly 13 times longer period of l i b r a t i o n ) .  
For increasingly l a r g e r  i n i t i a l  displacements, however, 

For very small 

w i t h  a p r i n c i p a l  sho r t  per iod of 

d d  3 



Non-Periodic Motions. 2. 

t he  non-periodic o r b i t  detaches i tself  from the  per iodic  
one w i t h  the  same @-value, f i rs t  i n  the  regions of the  
two turn ing  points ,  describing complete short-period 
loops outs ide  of  the  per iodic  o r b i t  and increasing i n  t h i s  
manner the  e f f e c t i v e  l i b r a t i o n  amplitude of the non- 
per iodic  t r a j e c t o r y .  The over -a l l  l i b r a t i o n a l  behavior 
i s  maintained, but with an increased amplitude depending 
on the i n i t i a l  deviat ion from the per iodic  o r b i t .  No 
ind ica t ion  of s e a l  i n s t a b i l i t y  i s  observed, even when the  
dimensions of the  non-periodic l i b r a t i o n "  are many t i m e s  
those of the r e l a t e d  per iodic  o r b i t .  Clearly,  however, 
t he  concept of "ordinary s t a b i l i t y "  does not  cover such 
phenomena, but a s p e c i a l  concept of " l i b r a t i o n a l  s t a b i l i t y "  
may be appropriate .  it may be character ized and defined 
by one f e a t u r e  which seems t o  apply t o  a l l  the  observed 
non-periodic l i b r a t i o n a l  motions: The appearance of 
ordinary s t a b i l i t y  (vine- l ike o s c i l l a t i o n s  about a reference 
o r b i t ,  without any closed loops ou t s ide  of i t )  can be 
r e s to red  by r e f e r r i n g  the non-periodic t r a j e c t o r y  t o  some 
o t h e r  per iodic  l i b r a t i o n  o r b i t  of l a r g e r  amplitude and w i t h  
a correspondingly l a r g e r  Jacobi constant Co, i n s t ead  of 
t o  the  one w i t h  the value C of the  non-periodic o r b i t .  

11 

The observed f ea tu res  a r e  those i n  the  r o t a t i n g  
coordinate system of the r e s t r i c t e d  problem. If the re- 
lated h e l i o c e n t r i c  osculat ing o r b i t a l  elements are com- 
puted a t  varfous p o i n t s  of the l i b r a t i o n a l  motion, then 
it  is found that durfng the whole l i b r a t i o n  the  semi-major 
a x i s  a of t he  non-periodic Trojan follows rather c lose ly  
t h e  long-period f luc tua t ion  of the  per iodic  Trojan i n  that 
l i b r a t i o n  o r b i t  whkh approximates bes t  t he  amplitude of 
t he  non-periodic l i b r a t i o n .  The e c c e n t r i c i t y  e ,  however, 

go '9. 
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f l uc tua te s  very l i t t l e  and i s  roughly proport ional  t o  the  
amplitude of the  p r inc ipa l  short-period o s c i l l a t i o n  i n  
the ro t a t ing  frame of reference.  I n  t h i s  connection it 
should be noted that the e c c e n t r i c i t y  of the per iodic  
Trojan i s  always very small, o r ,  more prec ise ly ,  of t he  
order  of the mass r a t i o  of the two f i n i t e  masses. The 
observed behavior of the elements a and e can be understood 
on the  basis of  the Tisserand c r i t e r i o n  

as a n  approximate equivalent of  t he  Jacobi  i n t e g r a l .  
With J u p i t e r D s  s o l a r  dis tance a '  = 1 as the  u n i t  of length,  
Eq.  (1) shows tha t  near  a = 1 the required constancy of 
t he  left-hand s ide i s  indeed compatible w i t h  rather sub- 
s t a n t i a l  variabion of a,  i n  combination w i t h  much smaller 
va r i a t ions  of  e .  

Considering the  s t a b i l i t y  suggested by the  numerical 
r e s u l t s  as described above, it appears desirable t o  a t tempt  
an  a n a l y t i c a l  representat ion of these non-periodic motions 
i n  the  f o m  of o s c i l l a t i o n  terms of various periods superim- 
posed on a per iodic  l i b r a t i o n  as reference o r  intermediate 
o r b i t .  I n  t h e  Trojan problem as well  as i n  the  earth- 
moon case,  such reference o r b i t s  are ava i l ab le  i n  t h e  form 
of t h e i r  Fourier  s e r i e s  representa t ions ,  and f o r  the Tro- 
jans  they can be in t e rpo la t ed  between the d i r e c t l y  computed 
per iodfc o r b i t s  (Rabe, 1962) t o  f i n d  any des i red  per iodic  
so lu t ion  within the amplitude range of the real  Trojan 
p l ane t s .  

I n  the theory thus proposed, t h e  bas ic  per iodic  

1 
I 
I 
I 
P 
1 
I 
I 
1 
1 
I 
I 
I 
1 
1 
I 
I 
1 
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o r b i t  w i l l  evident ly  play the same r o l e  as H i l l ' s  v a r i a t i o n  
o r b i t  i n  t he  lunar  theory. I n  f u r t h e r  analogy, the non- 
per iodic  Tro janFs  o s c i l l a t i o n  about t he  reference o r b i t  
i s  approximately proportional t o  the  e c c e n t r i c i t y  i n  i t s  
h e l i o c e n t r i c  o r b i t ,  j u s t  as the moon's devia t ion  from the  
luna r  v a r i a t i o n  o r b i t  i s  r e l a t ed  t o  i t s  o r b i t a l  e c c e n t r i c i t y .  
Here, however, the analogy ends, because the intermediate  
Trojan o r b i t  d i f fers  e s sen t i a l ly ,  geometrically as w e l l  
as a n a l y t i c a l l y ,  from H i l l %  v a r i a t i o n  o r b i t ,  The sharp 

curvature  and small veloc i ty  nea r  t h e  two turning po in t s  
of the l i b r a t i o n  o r b i t  i n  p a r t i c u l a r  are q u i t e  unique 
f e a t u r e s  of t h e  problem a t  hand. This phenomenon impairs 
also t he  usefulness  of the w e l l  known second order  d i f -  
f e r e n t i a l  equatfsri of  iiiii f o r  the riamil diaplaczment 
f rom the  reference o r b i t ,  and f o r  the  discussion of  the 
s t a b i l i t y  of the la t te r ,  It had been found that the 
per iodic  func t ion  f ( u )  i n  Hill's equation (Rabe, 1961) 
converges r a t h e r  poorly i n  t h e  case of t h e  per iodic  Trojan 
o r b i t s ,  and has sharp and deep d ips  a t  t he  two turn ing  
p o i n t s ,  This behavior can a l s o  be understood on the basis 
of the computed non-periodic o r b i t s ,  as wel l  as i n  the  l i g h t  
of t he  a n a l y t i c a l  r e s u l t s  t o  be presented here ,  To the 
f irst  order  of approximation, the p r i n c i p a l  short-per iod 
o s c i l l a t i o n  superimposed on the  long-period l i b r a t i o n  
o r b i t  has the  shape of an  e l l i p s e  w i t h  a 2/1 r a t i o  of 
i t s  p r i n c i p a l  axes, and the large a x i s  tends t o  keep i t se l f  
a l igned  with the tangent t o  J u p i t e r ' s  o r b i t ,  but not  w i t h  
the  tangent t o  the  l i b r a t i o n  o r b i t  i n  the1 r o t a t i n g  
frame. I n  o the r  words, the short-per iod oso i l3a t ions  
do not  follow the  curvature of the  l i b r a t i o n  o r b i t - a n d  
consequently cannot be represented by j u s t  a fe; terms 
f r o m  a so lu t ion  o f  Hill's equation. 

so  3 
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11, T_he Dif fe ren t i a l  Equations -.L_ f o r  t he  Displacements 
-- from the  Periodic  Librat ion Orb i t  

If the o r i g i n  of the  r o t a t i n g  rec tangular  coordinate 
system (x,y) i s  i d e n t i f i e d  w i t h  the  cen te r  of mass of t he  
two f i n i t e  masses, both of which a r e  permanently a t  r e s t  
on the  x-axis, then the  per iodic  l i b r a t i o n s  a r e  known 
funct ions  

w i t h  given numerical c o e f f i c i e n t s  xo, yo, X C, j 9  X s ,  j, 

YcJ3 ys , j3  and w i t h  

( 3 )  

In Eq. ( 3 ) , ,  T i s  t h e  period of t he  l i b r a t i o n ,  and to 
denotes the moment when the per iodic  Trojan p lane t  i n t e r -  
s e c t s  the  straight l i n e  connecting the p r i n c i p a l  mass (sun 
o r  e a r t h s  r e spec t ive ly )  w i t h  t he  t r i a n g u l a r  po in t  L 5' a t  
the  outs ide passage of L The quant i ty  n, a l s o  defined 
by Eq. ( 3 ) ,  may be ca l l ed  t h e  frequency o r  mean motion of 
t he  l i b r a t i o n .  I n  Eqs. (2), only the  c o e f f i c i e n t  xo 
d i f f e r s  frPom the corresponding po i n  the  e a r l i e r  (p ,q)-  
system (Rabe, 1961), i n  consequence of  t he  d i f f e r e n t  o r i g i n  
of t h e  (x,y)-system. The convergence of the  s e r i e s  repre-  
sented by Eqs, ( 2 )  was found t o  be very s a t i s f a c t o r y  f o r  
a wide range of l i b r a t i o n  amplitudes, i n  t he  sun-Jupi ter  
as w e l l  a s  i n  the  earth-moon case.  The theory of non- 
per iodic  motions t o  be out l ined  here  a p p l i e s  t o  both cases,  

5" 
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but  f o r  the sake of a convenient terminology everything 
w i l l  be phrased i n  terms of the Trojan problem, f o r  which 
it i s  a l s o  intended t o  use the  r e s u l t s  first of a l l .  

The per iodic  so lu t ion  ( 2 )  satisfies the d i f f e r e n t i a l  
equations 

.. 
y + 2Nx = R y  , 

(4) 

where R x  and denote the par t ia l  de r iva t ives .  with respec t  
t o  x and y of the  funct ion 

E q s ,  (4 )  are based on the adoption of the constant  d i s -  
tance sun-Jupi ter  as the  u n i t  of length,  of the mass of 
the sun as t h e  u n i t  of mass, and of a u n i t  of t i m e  which 
reduces the g r a v i t a t i o n a l  constant t o  un i ty .  Therefore, 
J u p i t e r ' s  angular  o r b i t a l  ve loc i ty  N i s  r e l a t e d  t o  i t s  
mass by 

N 2 = 1 + f l  

In  Eqs. (5) f o r  fl, t he  q u a n t i t i e s  A, and denote the 
per iodic  Tro jan ' s  dis tance from the sun and from J u p i t e r ,  
respec t ive ly ,  and are given by 
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7 )  indicate  that the located a t  
9 0 , and J u p i t e r  a t  

The d i f f e r e n t i a l  equations (4 )  have t o  be sat isf ied 
not  only by the p a r t i c u l a r ,  per iodic  so lu t ions  (2), but 
a l s o  by any 

(8)  
- - x = x + u  y = y + v  

representing t h e  motion of a non-periodic Trojan o s c i l l a t i n g ,  
by increments (u ,v) ,  about the (x,y) of the pe r iod ic  o r  
reference so lu t ion  ( 2 ) .  It i s  e a s i l y  seen that the re- 
placement of  x , ~  by x + ~ ,  y+v i n  E q s ,  (4), and the sub- 
sequent subt rac t ion  of the o r i g i n a l  E q s .  (4), produces the 
new d i f f e r e n t i a l  equations f o r  u,v i n  the form 

v2 + R uv + ... 
+ $%yy XXY 

where the 1 2x(x+u, y+v) and \ I  (x+u, y+v) o r i g i n a l l y  
involved on the right-hand sides have been expanded as 
Taylor se;rEes in powers of u,v. The R e t c . ,  
denote the  second and higher o rde r  par t ia ls  of w i t h  

respec t  t o  x and y o  as func t ions  of x and y alone ( w i t h  
u = v = O), and thus as per iodic  func t ions  of d . 

Y 

XX' XY,Q 

Two d i f f e ren t  p o s s i b i l i t i e s  exist f o r  the determination 
of t h e  R,, QxyS e t c . ,  on the basis of the corresponding 
per iodic  so lu t ion  ( 2 ) .  F i r s t ,  d i f f e r e n t i a t i o n  of Eqs .  ( 4 )  
w i t h  respect t o  the t i m e  t produces 
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two r e l a t i o n s  involving the three second order  p a r t i a l s  of 

y, 2, y o  
mination of ()), > is obtained f r o m  

C I  !I together w i t h  t he  known per iodic  funct ions k, 9 ,  x, 
I. The t h i r d  r e l a t i o n  s t i l l  needed f o r  the de ter -  

YY XY 

taking advantage of  t he  f a c t  that f o r  motions l i m i t e d  t o  
the (x,y)-plane, w i t h  z=Ot one has 

2 1  
ZZ Y 

’ = -N + -  (2Nk + j ; )  , R 

so  that 

2 1 .- ‘2, + 0 = 3 N  - - ( 2 N i + y )  . 
YY Y 

YY’ Now E q s .  (10) and (13) may be solved f o r  R > R 
Rxyi and the f o u r  t h i r d  o rde r  fiartials of R may then be 
found f rom r e l a t i o n s  obtained by d i f f e r e n t i a t i n g  Eqs .  
(10) and (13) w i t h  respect  t o  t, and Eq. (13) a l s o  w i t h  
r e spec t  t o  y. The continuation of these  d i f f e r e n t i a t i o n  
procedures ev ident ly  produces the necessary number of 

any required order  as per iodic  func t ions  of 0. 
s o l u t i o n  of these  systems o f  equations w i l l  involve d iv i -  
s ions  by var ious powers of y and of V = x + y , but f o r  

r e l a t i o n s  f o r  the determination of the partials of R of 
The 

2 -2 -2 
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the  l i b r a t i o n  o r b i t s  considered here,  these  two q u a n t i t i e s  
never vanish. 

The second p o s s i b i l i t y  f o r  the  determination of the  
func t ions  
f o r  these  partials i n  terms of x and y .  
derived from the  corresponding d i f f e r e n t i a t i o n s  of  Eq.  
(5)  f o r  R, considering a l s o  the  Eqs .  (7) f o r  
One f i n d s  

=, e t c . ,  i s  based on the  general  expressions 
These a r e  e a s i l y  

n and '. 

7?+++i'] 2 
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e t c .  Evidently these expressions o f f e r  no advantage over 
t he  Eqs .  (10) and (13) and those following from the  
d i f f e r e n t i a t i o n  of (10) and (13) i f  a d i r e c t  s u b s t i t u t i o n  
of the per iodic  funct ions x,y is  contemplated. However, 
t h e  Eqs. (14), (151, e t c . ,  are very convenient f o r  the 
determination of a l l  these partials of R by harmonic 
ana lys i s ,  which is f a c i l i t a t e d  by the a v a i l a b i l i t y  of t h e  
s p e c i a l  values of x and y f o r  a l l  the  per iodic  o r b i t s  ob- 
t a ined  i n  the Trojan case as w e l l  as i n  the  earth-moon 
system. For i n t e rpo la t ed  per iodic  Trojan o r b i t s ,  t h e  
required s p e c i a l  values of x and y, f o r  equ id t s t an t  values 
of d, may be obtained e i t h e r  by in t e rpo la t ion  between the 
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spec ia l  values of the a c t u a l l y  computed o r b i t s ,  o r  by 

e t c . ,  and subsequent computation of the needed values 
of 
are the coef f ic ien ts  of the displacements u,v and of t he i r  
various powers i n  the d i f f e r e n t i a l  equations ( g ) ,  a re- 
duced accuracy w i l l  be permitted,  depending on the ampli-  
tude of the o s c i l l a t i o n s  represented by u and v.  

in te rpola t ion  of t he  coe f f i c i en t s  xo, yo, x c , l ’  xs,lJ 

x and y from Eqs (2 )  Since the n,,, nyy, e t c . ,  

Once the Fourier  expansions o f  the partials of have 
been obtained by e i ther  of the two methods, w e  may assume 
t o  possess a l l  of them i n  the form now given f o r  nm, 
R and fl 
R = + 2 

R = B~ + 2 [ B ~ , ~  cos (rd) + B s,r  s i n  (rdl] (16) 

YY’ XY 

[ A ~ , ~  COS (rd) + A s , r  s i n  (rd)] 
r=l xx 

YY r=l 
00 

cos (rd, + c s , r  s i n  (rd)] . 
r=l 

A s  f a r  as the s i z e  of the various coe f f i c i en t s  i s  concerned, 
it i s  c l e a r  that  f o r  small l i b r a t i o n s  the AO, B , Co 

should not d i f f e r  very much from the values of hm, 
R , fl a t  the  l i b r a t i o n  poin t  L which are w e l l  known, 
and a l s o  e a s i l y  obtained f r o m  Eqs .  (14) as follows: 

YY XY 5’ 

The corresponding values of the t h i r d  order  p a r t i a l s ,  a t  

1 
1 
1 
1 
8 
I 
I 
1 

I 
I 
I 
I 
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L are similarly obtained from Eqs. (15): 5’ 

12. 

These values are-listed here for subsequent reference. 
The principal periodic terms in Eqs. (16), with subscripts 
c,l and s,1, should be of the order of the coefficients 

indicate that the differences 
x in Eqs. (2), because Eqs. (14) XC,lr S,lS YC,P ys,1 

Qu - A()’ R - BO, R - co YY XY 

must be of the general order of the periodic parts of x 
and y, or of 

Moreover, the convergence of the wries represented by 
Eqs. (16) may be expected, by the same way of reasoning, 
to be just as satisfactory as that of Eqs. (2)  for the 
periodic solution itself. 

It will be convenient to transform the series ex- 
pansions of the Eqs. (16) into the exponential form. 
For this purpose, let 

I 

P o  = BO’ 
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so that  

13 

111, - The P r inc ipa l  Features  of the  Solut ion.  

Considering a t  f i rs t  only a l l  those terms which are 
l i n e a r  i n  u and v on the  right-hand s i d e s  of the d i f f e r e n t i a l  
equations (g), w i t h  t h e  c o e f f i c i e n t s  now given by Eqs .  (20) ,  
the  so lu t ion  may be assumed i n  the  f o r m  

00 00 

u = Curexp i ( r + c )  3 , v = x v r e x p  [ - 0 0  -ea 

J u s t  as i n  t he  case of H i l l ' s  equation, t he  unknown coef- 
f i c i e n t s  ur,vr and the  s t a b i l i t y  exponent c have t o  be 

determined from the  i d e n t i t i e s  r e s u l t i n g  from t h e  s u b s t i -  
t u t i o n  of Eqs.  (21)  i n t o  ( 9 ) .  Since each of the  two Eqs .  
( 9 )  furn ishes  one i d e n t i t y  i n  the form of  an i n f i n i t e  
s e r i e s  f o r  each value of the  i n t e g e r  rs t he  following p a i r  
of equations of  th is  kind has t o  be satisfied f o r  each 
p o s s i b l e  value of r i n  the  le f t -hand  terms: 

s=l s r-s + 7-sUr+s + PsVr-s 

r = 0, +1, +2, . . e .  - - 

: *  

812 
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For small bas ic  l i b r a t i o n s ,  i . e . ,  f o r  s m a l l  coe f f i -  
c i e n t s  a1, a-l, 
first approximation t o  the so lu t ion  of the i n f i n i t e  system 
of equations (22) may be obtained by neg lec t f ig  a l l  a,, 

UOJ vo 0 

y-l i n  Eqs. (20) ,  a r a t h e r  good 

Pr, yr except ao,  Po, To, and a i l  urJvr except 
The r e s u l t i n g  two equations, 

(n2c2 + ao)uo + (2Nnci + Tojvo = o 
-(2Nnci - y o ) u o  + (n 2 2  c + p o ) v 0  = 0, 

have a so lu t ion  i f  c satisfies the condition 

The E q s ,  (23) and (24) become i d e n t i c a l  w i t h  the w e l l  
known corresponding equations f o r  the f irst  approximation 
t o  the short-per iodic  so lu t ions  of  i n f i n i t e s i m a l  dimensions 
about the l i b r a t i o n  poin t  L i f ,  as j u s t i f i e d  f o r  such 5 
s m a l l  l i b r a t i o n ,  one puts  

w i t h  the  (n=), e t c  , as given i n  Eqs.  (17). 
(24) is  s a t i s f i e d  by a short-period frequency )J = nc, 
approximated by 

Then Eq. 

Since n = 2 r / T ,  t he  s t a b i l i t y  exponent c i s  given by 
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and i s  of t he  order  of 12. 

With t h e  proper r e s u l t  f o r  c, e i t h e r  one of  the two 
equations (23) may now be used t o  express uo i n  terms 
of voJ o r  v i ce  versa ,  and e i ther  uo o r  vo may be considered 
as arbi t rary,  
r e a l  var iables ,  the r e s u l t  of the first approximation 
can be wr i t ten  i n  the form 

Going back t o  tr igonometric func t ions  and 

V are arbitrary, and s ,o  O r  c,o’ s,o 
where e i the r  ucJ0,  U 

t h e  remaining two coe f f i c i en t s  depend on the two a r b i t r a r y  
ones and on c through r e l a t i o n s  equivalent t o  the complex 
equations (2;) and (24 ) ,  
coe f f i c i en t s  d f  t h e  so lu t ion  (28) involve a0, Po, 
which vary w i t h  the amplitude of the b a s i c  l i b r a t i o n  o f  
long per iod,  and which f o r  large l i b r a t i o n s  may d i f f e r  
s u b s t a n t i a l l y  from the approximations (25). Consequently 
the e l l i p t i c  approximation (28) t o  u,v i s  not  simply the 
transposed short-period so lu t ion  about L 
a l ready  the  e f f e c t  of the constant parts of fin, R 

These r e l a t i o n s  between the 

To, 

but contains  5’ 
YYJ 

XY e 

and R 

To improve the so lu t ion  t o  include the e f f e c t  of the 
p r i n c i p a l  per iodic  terms of the  second order  p a r t i a l s  of 
R, the  Eqs.  (22)  f o r  r ’= +1 - have t o  be solved simultaneously 
w i t h  those f o r  r = 0, considering the involvement of a,, 
a-1, * * ”  7-1 on the right-hand s ides .  The r e s u l t i n g  
equations are 
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a l u o  + ylvo + n2(c+1)2 + a. 
r r = o  

The improved value of c will result from the condition 
that the determinant of the coefficients of the six un- 
knowns u - ~ ,  v - ~ ,  has to vanish. Again, either 
uo or v 
unknowns will be obtained from the remaining f$ve inde- 
pendent equations of the system (29). 
experience with successive approximations to the corres- 
ponding solution of Hill's equation for the oscillations 
about the periodic Trojan orbits (Fkbe, 1961, 1962), and 
of  the numerical results for many non-periodic trajectories, 
it can be expected that even for relatively large libra- 
tions the result from Eqs. (29) for c will not differ much 

v1 
may be assumed as arbitrary, and the okher five 0 

~ 

On the basis of the 
1 

from the first approximation, as obtained from Eq. (24), 
and that the coefficients u - ~ ,  v - ~ ,  ul, v1 will be found 
to be substantially smaller than uo,vo. 
gence of the coefficients a,, pr, 

The good conver- 
Tr, as compared to 

the very poor convergence of the comparable er when Hill's I 
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equation is used (Rabe, 1961) , should benefit not only 
the successive improvements of c4 but also the successive 
determinations of the various ur3vr0 

Up to t-fiis point, the second powers of u and v have 
been neglected in Eqs, ( 9 ) .  Let it be assumed that 
the solution considering the linear involvement of u and 
v3 in the f o m  of Eqs, (211, has been completed to the 
desired degree o f  accuracy, as far as the numerical size 
of the coefficients ursvr is concerned. An (addition to 
this solution to account for the actual presence of the 
second order terms in u and v in Eqs. (9) can obviously 
be obtained by substitution of the linear solution" (21) 
into t h e  previously neglected se'cond order terms of Eqs. 
( 9 )  and by the subsequent determination of a new solution 
satisfying these newly created terms on the right-hand sides 
(and, of courses the linear terms as well). If then the 
new solution is added to the previous one, the general 
solution o f  the Eqs, ( 9 )  will have been completed to the 
terms of the second order in u and v. After this, of 
coursey a further "third order addition", considering 
the presence of cubic terms in u and v in the Eqs. (g), 
may be obtained l in the same general manner, if necessary 
or desired, Attention has to be paid to the form of the 
exponents (arguments) emerging in each addition to the 
previously established solution, because the re-appearance 
of previously obtained exponents in such an addition may ' 

require a slight revision of the earlier solution for these 
terms 

(1 

The substitution of Eqs. (21) into the second order 
terms of Eqs, ( 9 )  will' create exponents of the forms 
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i ( e c + r ) d  and ird, including cases w i t h  r = 0. 
the  adddtive so lu t ion  should provide f o r  a l l  these  ex- 
ponents, none of  which is  o f  the form of those i n  the  l i n e a r  
so lu t ion  (211, The coe f f i c i en t s  of  the new terms w i l l  be 
determined by s u b s t i t u t i o n  i n t o  the complete Eqs.  (9) e 

The terms w i t h  exponents i ( 2 c + r ) d  are of sho r t  period, 
those w i t h  ird, however, o f  long period, and constant 
terms appear when r = 0 i n  the  l a t t e r  group. 
of s m a l l  constant terms to the right-hand sides of Eqs.  (9)  
is  e a s i l y  absorbed by corresponding constant terms uoo 
and voo i n  u and v, respect ively.  
appearing i n  the two Eqs ,  (9) are k andA,  respect ively,  
then uoo and voo w i l l  be determined from 

Accordingly, 

The appearance 

If the  constants 

If one proceeds t o  the consideration of terms involving 
3 2  u u v, e t c . ,  i n  Eqs .  ( g ) ,  then it is  seen that t h e  sub- 

s t i t u t i o n  of the preceeding l i n e a r  and second order  solu- 
t i o n s  i n t o  these  terms w i l l  p a r t l y  produce new terms w i t h  
exponents of the form i ( r + c ) d  of the l i n e a r  so lu t ion  (21) .  
T h i s  w i l l  r equi re  a sl ight rev is ion  of the earlier so lu t ion  
f o r  these  terms, including a corresponding refinement of the 
determination of c ,  No p r inc ipa l  d i f f i c u l t y ,  however, 
appears t o  s tand i n  the way of an extension of the t o t a l  
so lu t ion  t o  any desired degree of prec is ion .  The purely 
per iodic  ( o r  constant)  nature of a l l  the terms emerging 
i n  the process of t he  solut ion,  combined w i t h  the  very 
good convergence of the  Fourier  expansions involved, i n -  
d i c a t e s  t r u e  o r b i t a l  s t a b i l i t y ,  not j u s t  i n  t he  first 
o rde r  sense usual ly  decided on the basis of t he  l i n e a r  
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terms alonej but considering the presence of the second 
and higher order terms as well. There is no indication 
of instability even for rather substantial amplitudes 
of u and v ,  These analytical results confirm the tentative 
conclusions from the numerous calculations of such non- 
periodic orbits 

JX. Some Properties of the Solution. 

If V is the non-periodic Trojan's velocity in the 
rotating frame, and Yo that of the periodic reference 
Trojan in the libration orbit, then one has at any time 

Limiting x and y to their principal periodic terms with 
j = 1 in E q s ,  (21)> and u and v similarly to the approxi- 
mation represented by E q s ,  (28) the products x6 and p? 
involved in Eq.  (31) are found to consist of periodic 
terms only, with arguments (c+l)do - The part +v 
howeverg contributes a constant part 

2 -2 

The difference n-f l  0 between the funct(ions R and 
no associated with the non-periodic and the periodic 
Trojan, respectiveiy, can be expanded in the form 

R - R  =R u + R v + , R , U ' + $ R  1 v 2 + n  uvt.*.. 
0 X Y YY XY 

(33) 



Non-Periodic Motions. 20 0 

No constant terms arise from the l i n e a r  part of Eq. (33), 
but t he  second order  p a r t  contr ibutes  such terms. From 
the approximations of Eqs. (17) f o r  nm e t c .  , and from 
Eqs. (28) f o r  u and v, the  constant pa r t  of Q-n, is  
found t o  be of the form 

Now the  d i f fe rence  of the Jacobi constants Co and C, 
of the per iodic  and non-periodic Trojan, follows from the 
respective Jacbbi integrals as 

- c = 2(Ro - R, + (v2 - vo 2 ) 0 

6O (35) 

Since the righe-hand s i d e  of t h i s  equation, cons is t ing  of 
constant as w e l l  a8 of per iodic  terms of many d i f f e r e n t  
per iods,  must always be equal t o  the  conatant lef t -hand 
s i d e ,  it follows that a l l  the var iab le  terms w i t h  the  same 
argument must separa te ly  add up t o  Serg,~a~d~~that,hhe,can- 
s t a n t  terms must a l s o  satisfy the  r e l a t i o n  

co - c = 2 (Ro  - R, + (v2 - vo 2 ) 0 (36) 

- 
To evaluate t h i s  expression f o r  Co-C, the r e a u l t s  of Eqs. 
(32) and (34) have merely t o  be subs t i t u t ed ,  
advantage of the r e l a t ions  e x i s t i n g  b'etwetn the coe f f i -  
c i e n t s  of t he  e l l i p t i c  f luc tua t ion  repreaented by Eqs. 
(281, and i f ,  i n  l i n e  wi th  the  approximat'ions already 
introduced, terns of order a r e  omitted, the r e s u l t  
from Eq. (36) i s  reduced to  

If one takes 
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T h i s  r e s u l t  confirms the numerical f ind ings  that the 
Jacobf constant C of the non-periodic o r b i t  i s  always 
smaller than the Jacobi constant Co of  the proper reference 
o r b i t p  and tha t  t he  difference Co-6  increases  s u b s t a n t i a l l y  
wi th  the amplitude of the short-period f l u c t u a t i o n  as 
represented by v and vs900 
r e l a t i v e l y  small change i n  C may be related t o  a rather 
large change i n  the amplitude of the predaminant long- 
period l i b ra t ion .  Since the right-hand s ide  of Eq. (37) 

2 1.8 roughly proport ional  t o  e t h i s  r e l a t i o n  i s  q u i t e  com- 
p a t i b l e  w i t h  Eq. (1)9 according t o  which C i s  a l s o  a 
funct ion o f  e . 

It should be noted that a c30 

2 

The constants K and involved i n  Eqs .  (30) can be 

approximated as follows: It can be seen that, with the  
approximations l i s t e d  i n  Eqs .  (18) f o r  the t h i r d  order  
p a r t i a l s  o f  n 9  the  constant contr ibut ions from the  second 
order  terns in Eqs .  ( 9 )  amount t o  

( 3 8 )  
neglecting again the higher order  terns i n  u and v. 
s t i t u t i o n  of K and 

Sub- 
i n t o  the Eqs .  '(30) leads t o  the 

hsQlUtfOn 

2 + V  2B ' voo = -- 7 ? / ; ; ( v C 9 0  - 2 + v  s,o 2, 
8 1  

S S O  

8 
uoo = 7 ("e,O 

( 3 9 )  
These small constant terms tend t o  produce a n  asymmetry 
o f  the pr incfpa l  short-period o s c i l l a t i o n ,  j u s t  as the 11- 
bra t ion  of long period has an  asymmetry which increases  

I 
I 
8 
I 
1 
1 
I 
I 
I 
1 
1 
I 
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w i t h  the amplitude of the  l ibrat ion,  The constant d i s -  

placements uoo,voo depend likewise on the ( a r b i t r a r y )  
s i z e  of t he  p r inc ipa l  short-period o s c i l l a t i o n  as represented 
by vc3o and V s , y  

V, Summary and Conclusions. - 
It seems that the  r e s u l t s  of t h i s  ana lys i s  a r e  of 

i n t e r e s t  f i rs t  in so fa r  as they a f f o r d  a deeper ’ ins tght  i n t o  
t h e  basfc na ture  and stamity of the  non-periodic motions 
i n  a wide neighborhood of the t r i a n g u l a r  po in ts .  Secondly, 
howeverg it is  hoped that the  theory can be appl ied t o  the 
motions of t he  a c t u a l  Trojan p lane ts ,  a f te r  i t s  proper 
extension t o  the  less r e s t r i c t e d  case of an eccen t r i c  
o r b i t  of J u p i t e r ,  and then t o  the inc lus ion  of deviat ions 
from the sun-Jupi ter  o r b i t a l  plane,  It w i l l  be appro- 
p r i a t e ,  of  course, t o  test  the convergence of  the expan- 
s ions  involved on a su i t ab le  hypothet ical  Trojan planet ,  
w i k h  r e a l i s t i c a l l y  chosen amplitude values f o r  t he  l i b r a -  
t i o n a l  and o s c i l l a t o r y  motion. 
of t h i s  method undoubtedly l i e s  i n  the  ready a v a i l a b i l i t y  
of completely rigorous per iodic  reference o r b i t s ,  which should 
el iminate  a t  the  ou t se t  a great deal of the work required 
i n  previous methods. The approach leads, of course, t o  
a mixture of numerical and a n a l y t i c a l  f ea tu re s ,  which, 
howevero should be no disadvantage, i n  the l i g h t  of s i m i l a r l y  
constructed theories  of other  problems i n  c e l e s t i a l  mechanics. 

The p r i n c i p a l  advantage 
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Y 
I 

Theory of Libra t iona l  Motions. 

I. Introduct ion.  

I n  the preceeding l ec tu re  (WUe,  he non- 
per iodic  motions i n  the  neighborhood of the per iodic  solu- 
t i o n s  of long period have been represented i n  the form of 
a series of superimposed o s c i l l a t i o n s ,  of var ious sho r t  
and long periods,  t ak ing  advantage of the a v a i l a b i l i t y  of 
p r e c i s e  Four ie r  s e r i e s  representa t ions  f o r  the  long- 
per iodic  l i b r a t i o n  o r b i t s  i n  the r e s t r i c t e d  problem. 
If the  r e l a t i v e  motion of 'the two f i n i t e  masses is  assumed 
t o  be e l l i p t i c ,  ins tead  of c i r c u l a r ,  these  per iodic  s o h -  - 

t i o n s  cease t o  exist .  We know, however, that the two 
t r i a n g u l a r  po in t s  themselves remain so lu t ions  a l s o  i n  the  
e l l i p t i c a l  problem. I n  t h i s  case, t h e  e q u i l a t e r a l  configu- 
r a t i o n  of the t h r e e  masses remains the same a t  a l l  times, 
and only the i r  mutual dis tances  experience per iodic  f l u c -  
t u a t i o n s  of the o rde r  o f  the  e c c e n t r i c i t y  e 1  of the rela- 
t i v e  o r b i t  of the two f i n i t e  masses. The three masses 
involved remain "at rest" i n  a non-uniformly r o t a t i n g  
system of reference axes, if the system i s  conceived as 
pulsa t ing ,  i n  add i t ion  t o  i t s  non-uniform r o t a t i o n .  If 
the small is not exac t ly  a t  one of t he  two equi- 
lateral  poin ts ,  but c lose  t o  it, i t s  motion r e l a t i v e  t o  
t h e  two f i n i t e  masses, therefore ,  may perhaps advantageously 
be described i n  terms of displacements from some appro- 
priate 
uniform r o t a t i o n  and pulsa t ion  of such a system. It is  
attempted i n  t h i s  study t o  d i scuss  the necessa r i ly  non- 
pe r iod ic  motion of any small mass, wi th  s t a r t i n g  conditions 
comparable t o  those i n  the  neighborhood of the per iodic  
l i b r a t i o n s  of the r e s t r i c t e d  problem, by f i r s t  t ransposing 
t h e  per iodic  o r b i t s  of the  r e s t r i c t e d  problem i n t o  the 

I1 l i b r a t i o n a l "  orbit which par 'kicipates i n  the non- 

96 

1. 
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just described elliptical system, simply applying the 
periodic scale factor as determined by Jupiter's elliptic 
motion, and by then establishing the differential equations 
for the deviation of the true motion from this pulsating 
o r  modified intermediate orbit, which itself, of course, 
cannot be expected to be a solution of the differential 
equations of the elliptic problem. 
however, that the displacements can be found as a con- 

It may be anticipated, 

glomerate of oscillations of various periods. 

11. Differential Equations -- for Non-Uniformly Rotatinq Axes. 

For convenience of reference, the two finite masses 
involved will be called sun and Jupiter, and the body of 
negligibly small maser a Trojan planet, but the derivations 
are valid, of course, also for the elliptical earth- 
moon problem (in the absence of the s&), or for any 
mass ratio permitting the existence of periodic solutions 
in the restricted case of the problem. 

The center of our ( l , q  )-system of rectangular axe8 
shall be assumed to coincide with the center of mass of 
sun . --3 Zupiter, and the 5 -axis shall permanently coincide 
with the straight line connecting these two finite masses. 
Then, if 

2 1-e P =I l+e cos 

represents the variable distance between sun and Jupiter 
as a function of the true anomaly €3 and of the orbital 
eccentricity e, the unit of distance being identified with 

825 



3. Theory of Librational Motions. 

the semi-major axis all of Jupiter's heliocentric orbit, 
the coordinates (c , ,ql)  of the sun and (t2,q2) of 
Jupiter, in this non-uniformly rotating system, will be 
given by 

where 
solar mass. 
marks, a fixed unit of distance has been defined, because 
the intended pulsation of the transposed reference libra- 
tion will be achieved by the application of the factorp 
as defined in ~ g .  (1). 

again denotes the mass of Jupiter in units of the 
In some deviation f r o m  the introductory re- 

As in the restricted problem, the Trojan's distance 
from sun and Jupiter will be denoted by A1 and n2, 
respectively, so that in terms of the Trojan's rectangular 
coordinates 

The unit of time shall be fixed again by demanding 
the constant of gravitation to be unity, so that Jupiter's 
mean motion N is given by 

In the non-uniformly rotating system just introduced, 
as associated with Jupiter's elliptic motion around the 
sun, the differential equations of motion for the Trojan 
are 

8 2 6  
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i f  the motion is  
f o r c e  funct ion R 

Now, s ince  

P =  P 2 e s i n e  1-e 2 

and 

p 2 6  = N w  3 

one easily f i n d s  

.. 2 p = -  e cos 0 , 
P 2  

A 

4. 

(5) 

l imited t o  J u p i t e r ' s  o r b i t a l  plane. 
i n  Eqs.  ( 5 )  is  given by 

The 

I, (7) 

sin 0 . e = - -  
f-3 

.. 
P 

In  the corresponding, uniformly rotating (x,y)- 

system of the r e s t r i c t e d  problem sun-Jupiter-Trojan, l e t  
the per iodic  l i b r a t i o n  o r b i t s  again be represented i n  
the form 

82  'I 
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w i t h  
= n ( t  - to) , 

where T is the l i b r a t i o n  period and to the zero epoch. 

Since the motion t o  be  transposed may be non-periodic 
a l ready  i n  t h e  r e s t r i c t e d  problem, or ,  rather, a c e r t a i n  
motion i n  the e l l i p t i c a l  problem may be more c lose ly  re- 
lated t o  a c e r t a i n  non-periodic t r a j e c t o r y  i n  the r e s t r i c t e d  
problem than t o  a pe r iod ic  s o l u t i o n  of the latter,  the 
most reasonable transformation should have the form 

- 

7 = p ( y + v )  

Here x,y represent  a per iodic  so lu t ion  (12) of the r e s t r i c t e d  
problem, ( ,T are the coordinates of the e l l i p t i c  problem 
as  previously introduced, and u,v are the unknown devia t ions  
from the per iodic  so lu t ion  x,y i n  the r e s t r i c t e d  problem, 
which have t o  be determined so that the f , q  as expressed 
i n  E q s .  (14) satisfy the  d i f f e r e n t i a l  equations ( 5 ) .  

It is  convenient t o  introduce 

- - 
x = x + u ,  y = y + v  

I n  the r e s t r i c t e d  problem, these z,? would be the coordi- 
na t e s  of a non-periodic Trojan p l ane t ,  s a t i s f y i n g  the 

8 2 8  
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d i f f e r e n t i a l  equaf=lons 

t 
.. a R  y + 2 N x = -  a ?  

6.  

(17) 
where the bar over 1, 
the funct ions given by Eqs. (3) and (6) when 5 is  re- 
placed by x, and 77 by $. 

2 J  and R ind ica t e s  that these are 

On the basis of Eqs. (14) and (l5)$ t he  time deriva- 
t i v e s  of [ ,  can be written i n  the form 

I n  the Eqs.  (3)  f o r  A, and 2 J  not  only a n d ?  

P,. but  a l s o  5, and t2 incorporate the va r i ab le  f a c t o r  
so that 

A, = pn, 9 

- 
2 = P A 2 ’  

which r e l a t i o n s  are simply a consequence of the bas i c  
Eqs. (14), o r  

829 



Theory of Libra t iona l  Motions 7 .  

which introduce the e f f e c t  of J u p i t e r ' s  va r i ab le  s o l a r  
d i s tance  p on a l l  the  r e l a t i v e  d is tances  i n  the (5 ,? )-  
system. It is  e a s i l y  seen now that 

and i f  one s u b s t i t u t e s  Eqs .  (18), (lg), (22), aa  w e l l  as 
the earlier Eqs. (8) and (11) i n t o  the  d i f f e r e n t i a l  equa- 
t i o n s  (5), considering also Eqs. (1) and (17), then, af ter  
mul t ip l i ca t ion  of t h e  r e su l t i ng  equations by 
take the form 

2 
P ' these 

- 
p32 - 2 N G p $  + 2N p 2 e  sin eii = - d R  G 2 -  a;; 

If these d i f f e r e n t i a l  equations are compared with the  
earlier system of equations (16)0 w i t h  i d e n t i c a l  r ight-  
hand terms, the more involved na ture  of  the lef t -hand 
sides of Eqs. (23) is due to  the  f a c t  that Eqs.  (23) are 
those f o r  a u,v-solution sa t i s fy ing  the o r i g i n a l  Eqs. (5) 
of the e l l i p t i c  problem, while  Eqs. (16) determine the 
corresponding so lu t ion  of the ordinary r e s t r i c t e d  problem. 
I n  o rde r  t o  obta in  the d i f f e r e n t i a l  equations f o r  u and 
v, the z,? should now be separated i n t o  x,y, represent ing 
the per iodic  l i b r a t i o n ,  and the increments u,v, according 
t o  Eqs. (15). A t  the same time, the following e l l i p t i c  
expansions shall be introduced i n t o  Eqs.  (23), f o r  a l l  t h e  
per iodic  func t ions  and constants depending on J u p i t e r ' s  
o r b i t a l  motion: 
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p = 1 + $ e2 - ( e - p  3 3  cos M - 3 e'cos 2 M  - 8 3 e3cos w... 

P -  - 1 + 2 e2 - 2 ( e - v  1 3  ) cos M - $ e'cos 2 M  - 6 1 3  e COS 3Mo..  (24) 

p3 = 1 + 3e 2 - 3(e+ge 3 3  ) cos M + 8 1 3  e cos 3M. . .  

G= 1 - $ e2... 

e sin = ( e  - 3 e3) sin M + e2 sin 2 M  + 8 e3 s i n  3M... . 
D 
These expansions, i n  terms of t he  mean anomaly M of J u p i t e r  
in i ts  o r b i t ,  a r e  complete t o  t he  t h i rd  order  of e i n  the  
coeff ic ienes .  M may be introduced as a linear funct ion 
of time through 

M = Mo + N ( t  - to) t 

where the  epoch to is iden t i ca l  w i t h  that used i n  Eqs. 
(12) and (13) f o r  the per iodic  so lu t ions  x,y. Conse- 
quently,  Mo is  the  value of J u p i t e r ' s  mean anomaly a t  
an  i n s t a n t  a t  which the  per iodic  Trojan i n t e r s e c t s  the 
straight l i n e  connecting the e q u i l a t e r a l  po in t  L with 5 
t he  sun S on the  outs ide of L 
per iodic  Trojan re turns  t o  t h i s  pos i t ion ,  J u p i t e r ' s  mean 
anomaly w i l l  i n  general  have a value d i f f e r e n t  from Mo, 
unless  the  values of N and n, o r  of the per iods T and P, 
a r e  commensurable like 13:1, 14:1, e t c .  

A the  time toet when the  5'  

The right-hand s ides  o f  Eqs. (23) can be expanded as 
follows, about t h e i r  corresponding per iodic  expressions 

8 3 1  
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f o r  u=v=O : 

Here the nota t ions  nx, ny, nz,. . . have been adopted 
f o r  the corresponding partials w i t h  respec t  t o  x and y 
of the funct ion fl of  the per iodic  Trojan of the rers t r ic ted 
problem, and a l l  these partials are per iodic  func t ions  of 
time, through 6 as given i n  Eq. (13 ) .  

Now the e r i o d i c  so lu t ion  x,y, on which a l l  the 
p a r t i a l s  of 6 i n  Eqs.  (27) depend, satisfies the d i f f e ren -  
t i a l  equations 

$ + 2 N k = n  . 
Y 

After t h e  subs t i t u t ions  and expansions have been made 
as described, and after the right-hand s ides  of 'Eqs.  (23) 
have been expanded according t o  Eqs. (27), then the Eqs'. 
(28) may be subtracted,  and the following two d i f f e r e n t i a l  
equations r e s u l t  f o r  u and v: 

8 .  u - 2N+ = R1 + e [E1 + PI] 
? + 2 N 6  = R2 + e [E2 + B2] 

( 2 9 )  

Here the right-hand sides have been divided i n t o  two prin- 
c i p a l  parts, with a f u r t h e r  subdivis ion of the e c c e n t r i c i t y -  
a f f e c t e d  second part i n t o  those terms independent of u,v, 

8 3 .t 
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an4 those depending on u, v. 
so dis t inguished  a r e  represented by the  following ex- 
press ions  : 

The th ree  c lasses  of terms 

El = f; + gc + hil 

E2 = -g6 + f G  + hv , 

w i t h  
f = -2N [(l + 3  e2)  s i n  M - 8 

1 g = -2N [(l - 8 7 e2)  cos M + 3 e cos 2~ + 3 e* cos 3 ... 
L 

e2 cos 3 ... . h = -3e + 3(l + 8 e 1 cos M - 8 3 2  

It is  seen that  the  Eqs.  ( 3 0 )  f o r  R 
w i t h  t he  e n t i r e  right-hand s ides  of t he  d i f f e r e n t i a l  equa- 
t i o n s  in the case of the  r e s t r i c t e d  problem, and indeed 
Eqs. (29) reduce t o  those of the  r e s t r i c t e d  problem when 
e=O. For small eccen t r i c i t i e s ,  as that of J u p i t e r ' s  o r b i t ,  
t he  r e s t r i c t e d  problem (solut ion)  f o r  t he  motion of a 
non-periodic Trojan should therefore  s t i l l  represent  a 
good f irst  approximation t o  that p a r t  of the  complete 
so lu t ion  of the Eqs.  (29)  which may be ca l l ed  the  f r e e  
o s c i l l a t i o n ,  as based on a r b i t r a r i l y  chosen starting data. 
Evidently the p a r t i c u l a r  solut ion 

and R2 a r e  i d e n t i c a l  
1 

- u =  0 ,  v = O ,  

8 3 3  
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representfng the periodic libration x,y in the restricted 
case where e=O, does not exist when ef0. As far as the 
"elliptic" terms represented by El and F1 are concerned, 
they clearly will produce additions of the order of e to 
the restricted problem solution, and these additions have 
to satisfy the complete Eqs. (29), including the parts 
denoted by R1 and R2. 

The parts involving El and E2 depend on the first and 
second time derivatives of u and v, and therefore, once 
any solution including the consideration of these terms 
has been obtained, they have to be considered also in any 

order. The parts involving F1 and F2, on the other hand, 
do not depend on uIv and their derivatives, but only on 
the short-period orbital motion of Jupiter and the long- 
period libration represented by the periodic solution (12) * 
To find the effect of these terms, which cause a "forced" 
oscillation about the reference orbit, the R-parts of the 
differential equations have to be satisfied, of course, 
in the first approximation neglecting second and higher 
powers of the eccentricity e, while the consideration of 
the E-terms may and even should be postponed until the 
subsequent second approximation, because the terms pro- 
duced by the substitution of  the first approximation, 
of O(e), into El and E2 are of O(e ). The determination 
of the forced oscillations, to any desired degree of 
perfection, may be achieved without any consideration of 
the additional free oscillations, and the successive 
approximations for the free oscillations can be obtained 
without any consideration of the F-terms, which are the 
source of the forced oscillations. The E-terms, however, 

U U W U - ~ U U A A W  a r r h a c r n i r c r n f  BnnnnvmtiopAs WIL lezdLnLg t= temAa =f higher 

2 
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a f f e c t  both pa r t s  of the solut ion,  beginning w i t h  the 
i n i t i a l  consideration of t h e i r  presence, and once included 
play a similar r o l e  as the R-terms. 

In the l ight of these general  considerat ions of the 
s ign i f i cance  of the various parts i n  the d i f f e r e n t i a l  
equations (29), the general  so lu t ion  can be divided i n t o  
two parts, i n  the form 

u = uo + Uf , v = v  + V f ,  0 (35 1 

where uO,vO.represent the forced and uf,Vf the free pa r t  

the imposs ib i l i ty  of permanently vanishing u,v can be 
q u a l i f i e d  by saying that 

of the ~ ~ P i t i ~ i ? .  IT Avww A v.7 the ear l ie r  s t a t ~ i i ~ ~ t  C G G C ~ ~ W I I ~  

c o n s t i t u t e s  the fundamental and f i x e d  pa r t  of the so lu t ion ,  
but  that the p a r t i c u l a r  case 

U f - O ,  v f -  = o  (37)  

is  admissible f o r  the f r e e  pa r t  of t he  so lu t ion .  
then the so lu t ion  represented by uo,vo, even though non- 
per iodic  in nature,  plays a r o l e  i n  the e l l i p t i c  problem 
which i s  equivalent t o  the  r o l e  of the per iodic  so lu t ion  
i n  the r e s t r i c t e d  problem. 

Evidently 

111. Some Basic Features  o f  the Solut ion.  - h- 

As mentioned before, the f irst  approximation t o  the 
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forced part of t he  solut ion can be obtained without t he  
considerat ion of t he  E-terms, o r  f r o m  t he  reduced equations 

uo - 2NGo = R1 + eF1 , 
vo + 2NGo = R2 + eF2 

Since the right-hand s ides  of these equations involve 
products of Fourier  s e r i e s  depending on mult iples  of 6 
w i t h  others depending on mult iples  of M, the so lu t ion  
must necessar i ly  be of t he  form 

.. 

.. (38) 

where the in tegers  j ,k may have any value from -00 t o  -. 
have t o  be determined from the  3,k’ vj& 

The coe f f i c i en t s  u 
i d e n t i t i e s  which a r e  the r e s u l t  of s u b s t i t u t i n g  Eqs.  (39) 
i n t o  the  d i f f e r e n t i a l  equations (38). I n  cont ras t  t o  the 
s i t u a t i o n  encountered i n  the. determination of the coe f f i c i en t s  
of t he  p r inc ipa l  terms of the f r e e  so lu t ion ,  which as 
i d e n t i c a l  t o  the s i t u a t i o n  In  t he  f irst  approximation f o r  
the so lu t ion  i n  the r e s t r i c t e d  problem (Rabe, 1963)’ the 
i d e n t i t i e s  r e s u l t i n g  from the subs t i t u t ion  i n t o  Eqa. (38) 
have absolu te  terms, produced by eF1 and eF2+ respect ively,  
and therefore  the  so lu t ion  procedure w i l l  be rather straight- 
forward. Successive approximat.ions w i l l  be necessary, of 
course, but the convergence of the so lu t ion  w i l l  b ene f i t  
aga in  f r o m  t he  rapid convergence of the s e r i e s  involved 
i n  R1 and R2, and, i n  the  subsequent s t eps  considering 
second and higher  powers of e ,  from the convergence of t he  
bas ic  e l l i p t i c  expansions (24) and (25). , 
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For an i l l u s t r a t i o n  of the  method f o r  the determina- 
t i o n  of the coe f f i c i en t s  i n  the  so lu t ion  (39), l e t  it be 
assumed that the amplitude of the per iodic  l i b r a t i o n  x,y 
i s  small enough t o  j u s t i f y  the omission of a l l  the peSiod3-c 
terms of n,, nu, and R i n  the first approximation. 

X y  
Neglecting a l s o  i n  R1 and R2 a l l  the terms involving the  
second and higher order  powers and products of uo and vo, 
as w e l l  as in the parts eF1 and eF2 of Eqs.  (38) a l l  the 
second and higher powers of e, these d i f f e r e n t i a l  equations 
w i l l  be reduced t o  

.. - a G 0  = aou0 + Tov0 - B e  (k sin M + Ji COS M) , 
+ p o v o  + me (;c COS M - 9 sin M) , 

. (40) uO 
.. vo + 2NCo = Qo 

where the a0, Po, To a re  the constant terms of Rxx, 
R , (Rabe, 1963). It may be noted that the terms 
involving x and y, which a c t u a l l y  appear i n  F1 and F2 
according t o  Eqs.  (321, have been omitted, too,  because 
they contain the second order f a c t o r  n , as compared t o  the  
first order  f a c t o r  n contained i n  k and +. 

YY xy*. 

2 

The Eqs .  (40) are simple enough t o  assume the first 
approxirnqtion t o  the  so lu t ion  immediately i n  the trigono- 
met r ic  form 

u0 = u cos(M+d) + u s , , . ~ i n ( M + d )  + uc C O S ( M - 6 )  + c , l  ,-1 

C O S ( M + ~ >  + v S J l  s i n ( ~ + d )  + v 

-1 s i n ( M -  d) (41 1 
c o s @ - 6 )  + c,-1 v0 = ' v  c , l  

vs,-l sh(M-6)  3 

omit t ing terms w i t h  higher mul t ip les  of M and 6 It i s  

8 3 'I 
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easily seen that 2 M  enters the solution only in connection 
with the e2-terms in eF1 and eF2, and that 2d enters 
only in connection with correspondingly smaller terms in 
k and 9 as well as in R1 and R2. Furthermore, terms inde- 
pendent of M or' 6, or of both variables, do not appear 
in this first order approximation. Accordingly; the terns 
considered in .Eqs. (41) clearly constitute the principal 
terms of the forced solution uo,vo. 

, 

The substitution into Eqs. (40) produces the following 
eight identities, conveniently divided into two groups 
of four equations each: 

1 + clvc,l + DIVs,l = enN (XCJ + YS,J 
AIUs, 1 - DIVc,l + clvs,l = enN (XS,l - Yc,l 1 

(XC,l + YS,J 

= e m  (yc,l - f cluc,l - D1's,l + BIVc,l 

DIUc, 1 + c u  1 s,l 

s , l  

+ BIVs,l = 

A4Uc,-1 + C-lVC,-1 + D-lVs,-l = enN (-Xc,1 + Ys,l ) 
A-lUs,-l - D-lVc,-l + c-lvs,-l = enN (XS,l + Yc,l 1 

- D  u + B-lVc,-l = enN (-Xs,1 - YCJ 1 c-luc,-l -1 s,-1 

D-l'c, -1 + O-lUS,-l + B-lVs,-l = 

The coefficients denoted by A1, B1, C1, D1, 
D-1, are as follows: 

(Y,,~ - x c,l ) . 
B,l. C-l. 

(43) 

2 2 
= a, + (N  - n) A1 = a, + (N + n) A-l 

B1 = Po + (N + nl2 
c1 = c = To -1 
D1 = 2N (N + n) D =2N(N-n). -1 

(44) 

8 3 8  
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The coefficients of (the unknowns on the left-hand 
sides of the Eqs. (43) differ from those of the unknowns 
on the left-hand sides of Eqs. (42) only by the appearance 
of (N-n) instead of (N+n), The right-hand side8 of both - 

sets involve different combinations of the principal coef- 
ficients of 2 and $, and consequently the factor n, in 
addition to the pqesence of e (and N) as factors. 
order to have unique solutions of the two sets of linear 
equations, for the various unknown coefficients of the 
Eqs. (41), the determinants of the A1, B1, C1, D1, and of 
the A-1, B-1. C-1. D-1, should not vanish. 
first determinant by zl, the second one by ?-l, the rer 
sulting expressions can be represented in one equationt 

In 

Denoting the 

With the apprwkimating values of a,, Po, valid 
at the libration point L (Rabe, 1963), the contents of - 

the large { 1 bracket in Eq. (45) are found to approxi- 
mate +2n, and all the not-vanishing sub-determinants of 
the first order are then also approximated by 2n or -2n. 
Consequently, with 

5 

- 

2 4n , 1,-1 
7T 

a small divisor of the order of n affects the solution of 
the two linear systems (42) and (43), at least for the 
relatively small libration amplitudes where ao, Po, To 
can be approximated by the values of fl , R at 

tion (41) are of the order of e-L, where L represents the 
amplitude of the basic libration of long period. 

YY Xy 

LT. The coefficients uCJl, us,1, ..., v ~ , , ~  Of the SOlU- 
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To f i n d  the  second approximation t o  the  forced so lu t ion  
uo,vo, including coe f f i c i en t s  involving e ; xCj2, ,, YSj2;  
al, a-l, o o o g  7-13 the  r e s u l t  of the first approximation 
(41) w i l l  have t o  be subs t i t u t ed  i n t o  the various pre- 
v ious ly  neglected terns of the d i f f e r e n t i a l  equations ( 2 9 ) ,  
Careful planning w i l l  be necessary t o  make su re  that, 
depending on the numerical values of the various bas i c  
c o e f f i c i e n t s  involved, the proper coe f f i c i en t s ,  products 
and powers o f ' s m a l l  quan t i t i e s  are consfdered i n  each 
successive approximation. It can be seen, however, that 
the s u b s t i t u t i o n  of the f irst  approximation i n t o  the pre- 
viously neglected terms of higher order  w i l l  c r e a t e  new 

arguments of the form (jM + k d )  considered i n  Eqs.  ( 3 9 ) ,  
but  including tFms where e i t h e r  j o r  k,  o r  both, may be 
zero.  Consequently, ce r t a in  terms of long periods w i l l  
emerge w i t h  the terms of order e2-L. The constant terms 
produced by the subs t i t u t ion  can be absorbed by correspon- 
ding small constant terms i n  uo,vo, j u s t  as i n  the case of 
the second approximation t o  the f r e e  so lu t ion  in  the re- 
s t r i c t e d  problem (Rabe, 1963). I n  general ,  the previous 
approximation t o  the forced so lu t ion  w i l l  have t o  be ad- 
ju s t ed  f o r  any terms w i t h  the same arguments obtained 
from any subsequent addi t ive  so lu t ion .  While the details  
of the successive approxhratkons w i l l  depend on the ampli- 
tude of the bas ic  l i b r a t i o n  o r b i t ,  the present  exploratory 
ana lys i s  i nd ica t e s  the  stable na ture  of these  forced 
o s c i l l a t i o n s ,  which i n  t h e i r  e n t i r e t y  det'ermine one unique 
and p a r t i c u l a r  o r b i t  in  the  e l l i p t i c  problem, namely the 
equivalent of  the se l ec t ed  per iodic  l i b r a t i o n  of the 
r e s t r i c t e d  problem. 

2 

+..-- ..-a,..., ..a.S-I.. a -  -..l r r a 1 - i  I..---- 
cIc:iiuo, u : i L u c A  e2 eke, ,  w i i i c ; i i  ui 5 c i i c I - a A  i n v c  

In the general  so lu t ion  of the complete Eqs. (29 ) ,  

8 4 0  
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Theory of Libra t iona l  Motions. 18. 

the free part of the so lu t ion  has t o  be added and can be 
evaluated f o r  any reasonable starting conditions.  The 
p r i n c i p a l  part of the f r e e  so lu t ion ,  as has been seen, 
is  i d e n t i c a l  w i t h  the corresponding approximation i n  the 
r e s t r i c t e d  problem, where the forced part of the so lu t ion  
is non-existent. The second approximation t o  the free 
so lu t ion  i n  the e l l i p t i c a l  problem should, as has a l s o  
been shown, include consideration of t he  E-terms i n  Eqs.  
(29)0 
of M (through f,g,h), which are mul t ip l ied  by the deriva- 
t i v e s  of u and v as obtained from the first approximation, 
and s ince  the p r i n c i p a l  terms of the first approximation 
are per iodic  functions of c d J  the second order terms now 
created on the right-hand sides of Eqs.  (29) w i l l  involve 
arguments of the forms 

Since these E-terms involve per iodic  funct ions 

M + c d ,  M - c d, e t c .  

The periods of M and c d differ  only by amounts of the 
o rde r  of /,l. More precisely,  one has 

(47) 

the second of these  r e l a t i o n s  being an approximation. 
To the same degree of accuracy one gets the re fo re  

Those terms of the free so lu t ion  uf,vf depending on the 
argument (M-cd) w i l l  have the extremely long per iod T* 
determined by the (approximate) frequency 

8 4 '. 
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Theory of L i b r a t i o n a l  Motions. 

Consequently, 

which amounts t o  more than 12 l i b ra t ion  periods. The 
e f f e c t  of such terms w i l l  be small, however, since they 
appear only i n  the "e l l ip t ica l"  second-order part of the 
f r e e  solution. Their actual s i z e  w i l l  depend, as the 
amplitudes of a l l  the f r e e  osc i l la t ions ,  gn the i n i t i a l  
displacement from the forced solution, and consequently 
approaches zero when the i n i t i a l  deviations a r e  reduced 
t o  zeroo 
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Shock Waves in Rarified Gases 1 

I. Introduction 

In this series of lectures we shall survey the developments in rarified gas- 

dynamics toward the solution of flow problems, the shock wave structure serving as 

an example illustrating the difficulties that led to the various refinements and alter- 

natives. By rarified gasdynamics is meant the branch of gasdynamics which cannot 

be dealt with by the conventional continuum theory of a viscous and heat - conducting 

gas, hereafter referred to as simply the ( conventional) 

of the effects of very low density. 

still adopted, but modifications are required in two main aspects: First ly,  the law 

relating the viscous stresses to fluid deformation ( the Navier -Stokes relations ) and 

that relating the heat flux to temperature gradient ( the Fourier l a w )  are theoretically 

no longer valid. 

temperature jump" at a solid boundary, generally assumed in conventional continuum 

theory, must be re-examined. 

wave structure, we essentially divorce ourselves from the latter question. 

efforts therefore a rz  directed toward only a formulation of the proper equations to 

be used in rarified gasdynamics, 

continuum theory'' , because 

The concept of a continuum however i s  usually 

Secondly, the boundary conditions of "no velocity slip" and "no 

By restricting ourselves to the problem of the shock 

Our 

To seek a logical theory which is capable of treating the departure from the 

conventional Navier - Stokes and Fourier laws due to the very low density, we  fall 

back on the kinetic theory of gases. 

numerous molecules interacting with each other and with the environment according 

to the laws of classical mechanics. For the simplest case of a monatomic gas, the 

molecules a r e  all alike and have spherical symmetry. 

our model in the following discussion. 

in predicting quantitatively, with suitable chosen force laws between molecules , the 

viscosity and heat conduction coefficients for use in conventional continuum flows is 

well -known. Equally confirmed are its deductions concerning the flow in the "free 

molecule" limit of very, very low densities, such as regarding such flows through 

orifices or capillaries. These being the two extremes of the spectrum, we expect 

that it should also be fruitful in intermediate stages that characterize rarified gas- 

dynamics. 

The gas is now regarded as consisting of 

This will be understood as 

The phenomend success of kinetic theory 
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Shock Waves in Rarefied Gases 2 

11. Flow Regimes and the Knudsen Number 

When we consider a body of gas enclosed in a vessel of volume V , in equilibrium, 

the state of the gas is defined thermodynamically by the pressure p , the density 

and /o r  temperature T .  

kinetic theory. 

be N.  The density follows directly as 

p , 
These quantities must first be defined from the viewpoint of 

Let each of the molecules have a mass m , and the total number in V 

p = N m / V  = nm 

where n Z N / V , the number density. If each molecule is characterized by its "size" 

6 , which may be the diameter for the simplest model of hard sphere molecules, the 

average spacing X of the N molecules occupying volume V is 

NA13- V 
* l o  

or  - nA'J. We  have thus a dimensionless parameter for  the degree of rarefaction 

of the gas a s  N /a, i.e. , the average size of the cell for each molecule in terms of 

the molecular diameter. In classical kinetic theory, this parameter is shown to be 

related directly in the corrections of the perfect gas law: 

p = p R T  . 
We shall, however, assume that 21 /r is sufficiently large that the perfect gas law 

holds. A typical value of d is 10-8cm. At standard conditions ( 0  C and 1 atm. ) , 
the number density of gas molecules is given by the Loschmidt number, 

0 

19 3 
h = 2.69 x10 /cm. 

o r  N 1  -6 
=Po cm. 

and at / (r 30. The ratio becomes obviously larger a s  the density is decreased, 

since cr remains unchanged. 

The parameter 21 / @  is *lstaticlt in nature. A s  molecules a r e  actually 

continuously in motion, there is a "dynamic I I  characteristic length representing the 

average distance travelled by a molecule 

between successive collisions , known as  
/+ A'-.( 

3-0 0 1' 0 0 
X' 

the "mean free path" A .  Imagine the L o  ,'o 0 0 
/ 

6-w / 

0 0 0 0 
molecules arranged actually at distance f 
A* apart in a regular pattern. When a 
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molecule moves in an arbitrary direction, the probability of its hitting a second 

molecule at a distance of 

d to the passage area . Hence we  expect 

0 ( x i  ) is proportional to the ratio of the target area 
2 2 

2 2  2 
A - A ~ o ( A '  /r ) - o ( l / n a  ) .  

h -  (2 .69 Y1019)-1 x 1 0 l 6  = 10 

0 
With the same typical values for  31 and cr the estimate at 0 C and 1 atm. is 

-3 
cm. 

The mean free path goes up quickly as the density is reduced. In the standard 

atmosphere at 100 miles altitude, for instance, 
N -4 

h' = 10 cm. 

1 = 300 cm. 
H 

Now gasdynamics deals always with flow problems , involving therefore in 

addition a characteristic length which represents the scale of the flow phenomenon. 

To fix our ideas, let us imagine the flow as  over a body of length L .  We assume 

the flow can be described mathematically as a continuum, so that it must be possible 

to introduce l'fluid elements" of size 

kinetic theory, it is  necessary that statis- 

tical properties over molecules a re  well 

defined in a fluid element. In other words, 

there must be a sufficient number of mole- 

with e<< L .  On the other hand, to apply 
L $0 

cules in a cell of size I ,  o r  Ln;ls, Thus 

rarefied gasdynamics generally deals with the restriction of L7>4 >)A1 >> C. Because 

of the large difference of orders of magnitude between h and Xi , the value of A 

may be still taken as arbitrary. 

The significance of the mean free path is that it is a measure of the memory of 

the individual molecules in a flow field of size L .  When a molecule hits the body, it 

eventually rebounds after taking on some characteristics peculiar to the body surface. 

The explicit dependence of the molecular motion on the body characteristics is there- 

fore confined in a "sheath" of thickness roughly 0 ( A )  surrounding the body, which 

may be referred to as the "Knudsen layer". 

influence is only indirect, being propagated through successive collisions of the mole- 

cules which never were in direct contact with the body. 

Beyond the Knudsen layer the body 

The conventional continuum 
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equations of motion display no explicit dependence on the body geometry and its 

properties. It seems clear that they at most a r e  applicable to the region beyond 

the Knudsen layer. If boundary conditions a r e  nevertheless stipulated at the body, 

the implication must be a vanishingly thin Knudsen layer. 

corresponds to the limit of x/L +- 0. The parameter x /L  is known as the 

Knudsen number Kn . 

The case consequently 

In the other limit of Kn + a, the Knudsen layer extends to a sphere 

of radius A ,  the body being shrunk to a small region of size L near the origin. 

Of all molecules crossing the spherical surface of area 0 ( 3  ) , only a small 

fraction 0 ( L  / h ) has collided with the body and rebounded to cross the sphere 

again. 

2 

2 2  

Hence, if we examine the compo- 

spherical surface, there is hardly any  that 

comes directly from the body. The flow w 
in the region outside of the sphere is described by conventional continuum theory, but 

it is now almost undisturbed by the  presence of the body. Such considerations lead to 

the "free molecule flow" approximation, where momentum and energy transfers to 

the body a re  evaluated a s  if the free stream were completely undisturbed by collisions 

caused by those molecules rebounding from the body. It may be noted, however, that 

the "free molecule flow" approximation is never valid for the flow field at  distances 

away from the body large compared to the mean free path. In particular, for two - 
dimensional motions in the x , y -plane, say, many molecules f r im the z - direction 

certainly have suffered collisions before arriving at the plane of motion. 

led to difficulties, for instance, in the f ree  molecule flow through a two -dimensional 

channel. 

This has 

In between the limits of continuum and free - molecule flows, the flow regimes 

a re  often classified according to the magnitude of the Knudsen number following 

Tsien ( 1946 ). 

in the sense that only the lTno slip" and "no jumptf conditions at a solid boundary need 

to be modified, but the equations of motion remain unchanged. Beyond the "slip flow" 

regime and before reaching the flow molecule limit, i.e., for Kn 0 ( 1 ) , the flow is 

said to go through a "transition regime'! It is in fact for flow problems in this regime that 

Thus for Kn C< 1 the flow is said to be in the "slip flow" regime, 

8 4 '7 
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much work remains to be done. 

111. Kinetic definition of pressure and temperature of gas in equilibrium. 
Maxwellian distribution function 

The 

We return to the question of defining pressure and temperature for gas in 

equilibrium in terms of the motion of the m 
molecules. 

fixed vessel 

In the interior consider a small volume 

element dV enclosed by control surface 

The gas is assumed to be in a 

and the pressure is uniform. 

5 

I I 

S.  Through a small area dS on the surface, molecules having velocity < will  

pass a t  the rate of n 

and 3 the unit outward normal on dS. The rate of momentum loss due to such 

molecules in the 3 direction is therefore m n 3  ( 7 * 2 ) 

? *  3 dS , where n is the number density of such molecules, f f 

2 
dS . For all molecules 

5 
having various velocities 7, the total rate of momentum loss i s  obtained by summing 

4 
over all 5 's. The result on the other hand must be equivalent to the action of a 

pressure force pdS on the same surface element. Hence w e  wr i te  
c-r 

For a comparable definition of the thermodynamic temperature, we consider 

Let us imagine heat has been added again the gas in a fixed vessel of volume V .  

to raise the temperature from absolute zero to T .  Kinetically, all this energy, 

say E , can only go into the translation energy of the monatomic molecules. Thus 

or 2 
dT = i m n T F  

7 
where C is the specific heat at constant volume, p 

V 
r unit mass,  and general1 

temperature dependent. This gives an implicit definition of T in terms of the 

molecular motion. 

Since it is always assumed that a large number of molecules a re  present in 

8 4 8  
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T as covering the entire range P therefore goes over into an 

the small control volume 

between zero and infinity. 

integration. The number 

dV , we must regard 

The summation over 

density n +  may be rewritten as 
2 3  - 7  

n a = n f ( < ) d f  , 
5 + +  

n being the number density of all molecules, and f ( 'f ) d r  giving the fraction 

above should be under- * + .  + having velocity between 3 and 7 + d q  . The symbol d q  

I 
I 
I 

stood a s  a volume element in the velocity space, e.g., in Cartesian space 

+ 
and not a differential vector. The function f ( 7 ) is referred to as the "velocity 

distribution function". 

the velocity distribution function has the property 
+ +  4 f ( f ) d f  = 1  * 

Turning to the pressure definition, we have 

(In. 1) 

( 111. 2 ) 

where F, f 3, the velocity component normal to the surface, and the bracketed 

quantity (Q> represents in general the average of the property Q over all mole- 

cules in the velocity space, 

(111. 3 ) 

Likewise, for the temperature we get 
PT 

( 111. 4) 

It is next of interest to deducethe velocity distribution function in a gas in 

equilibrium. 

distribution function must be a function of the speed $ alone. Let the entire speed 

First of all there can be obviously no dependence on orientatiol?, so the 

. 8 4 3  
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( i )  range be divided into a finite number of discrete cells according to the average 6 
within the cell,  and let the number of molecules within the i th cell be a . 

i 
postulated that a t  equilibrium the distribution of the molecules is the most probable 

random arrangement of the N inolecules into all these cells, subject to the con- 

straints that the total number N and the total kinetic energy E be kept constant. 

It is then 

If w e  assign a set of numbers a the number of ways to achieve such an 
i '  

arrangement is N! /TI (a .  ! ) . Therefore we w r i t e  the possibility P of such an 
i 1  

arrangement as P = N! / 
carried out for P' = log P under the constraints N = const. and E = const. Using 

Lagrange's multipliers o( and oc' , we finally seek to maximize P' - .cN - OL' E. 

( a. ) ! For convenience, the maximization may be 
1 1  

The necessary condition is thus 

But og (ai  ) ! , the "logarithmic derivative" , 

for a. 7 7  1 ( Jahnke and Emde: "Tables of Functions", p. 18 ).  Hence assuming 
1 

a.7> 1 
1 

Oll ( U 2  or  a. = A. exp ( - 7 m y  ) .  If the cell size is made to tend to zero formally, 
1 

the distribution functions must be of the form 

-p? 
f = A e  ( 111. 5 ) 

known as the Maxwellian distribution function. The two constants A and /s are 

determined by the constants N and E .  To integrate, note that the volume element 

d? should be evaluated as that of the spherical shell between speeds 5 and 

5 + d $  i.e., 4 T  4 d$. In this way w e  find 2 

(111. 6) 

Meanwhile, for the pressure p , w e  choose 3 to be in the Cartesian x - direction 
3 

and denote the velocity 5 by its Cartesian components ( q1 , q2 , <3 ) . Then 

8 5 0  
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0 
Since the perfect gas law is assumed to hold, the pressure formula gives 

& =  1 / 2 R T  . 
From the second of Eq. (111.6 ) 

8 

= p / 2 p  * 

( 111. 7 ) 

b E  i3 3 
C v - a T -  - - (3/4/5) = p Y 

a well  -known result in thermodynamics. 

It should be noted that the assumption of a. 7 7 1  that led to the Maxwellian 
1 

distribution is clearly violated as E,(i 3 a,. In fact, although integrations in the 

velocity space a re  always)car&ed out to 5 + a,, the logical cut -off for a given E 

cannot exceed = 

the entire amount of energy. The assumption of a.77 1 ceases to hold before 

? ( i )  = 

molecules whose speeds approach tmaX. , It however applies to almost all 

molecules. 

formal1 

, which is the speed Qf a single me!ecu!e abserbiw b 
max. 

1 

, and the Maxwellian distribution function has little significance for 
max. 

With the Maxwellian distribution function, the state of a gas is fully described 

by the two parameters n and p . Instead of @, it is often more physical to use 

the average speed of the molecules c , 
- 

c ( f )  = J- { 111. 8 ) 

which is quite close to the sound speed a ( a  = d z  , Y = 5 / 3  for monatomic 

gases ) , which is the propagation speed of small disturbances and plays an important 

role in conventional gasdynamics. Likewise the number density n is directly 

related to the mean free path A . The state of the gas molecules thus may also be 

characterized by c and h . Out of C and 3 , we can further construct a time 

constant Z o r  its inverse 8: 

7- = > / E  = 1/63. (111. 9 ) 

8 is known as the "collision frequency" of a molecule, since in time & ,  0 b t  

gives the average distance travelled c d t  divided by the average distance 

between collisions. 

h 

The time constant T is of considerable interest. If the gas is not in equili- 

brium, it is plausible to imagine that collisions tend to bring the gas to the most 
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probable, hence the equilibrium distribution, 

no other than 7 .  

constant for the overall phenomenon. If the latter is much greater than T, at each 

instant and location the molecules in a small volume element dV will  be in "quasi - 
equilibrium". That is, as a first approximation, the velocity distribution should be 

Maxwellian, with n and assuming the instantaneous local values, but the obser- 

ver  must now ride with the average velocity U (over all the molecules in dV ) . 
W e  denote this as the "local Maxwellian'l f 

The time constant for this process is 

In the case of gas in non -uniform motion, there is also a time 

( 0 )  

+ + +  
where c e - U, sometimes referred to as the "thermal velocity". It is easy to 

3 + 2 
verify that following Eq. (111. 10  ) , < 7 > = U as stated; also < ;f 2 = 3 /2p , 
showing that p ( o r  + T )  is intimately connected with c . 

A s  a further illustration, in a slightly non -uniform gas let us assume that the 

state of the molecular motion be still characterized approximately by 

Together with the molecular properties of mass m and size 6, there are now 

four parameters from which, among other things, the behavior of the transport 

properties may be deduced at least qualitatively. 

suppose 

and 2.  

For the viscosity coefficient ,a 

/ c c = p P , T E , h )  * 

By dimensional reasoning, there must be 

The function G ( 1 /r) should be taken in the limit X/T  3 03. Thus the first 

approximation should yield /c" N p c 1 which is confirmed by detailed analysis. 
- 

IV, The Boltzmann Equation 

The statement that the velocity distribution function for a gas not in equilibrium 

is subject to change due to molecular collisions is mathematically expressed by the 

Boltzmann equation. Consider an arbitrary control volume V enclosed by the 

surface S in the interior of the gas. On a surface element dS let 2, be a unit + 

I 
1 
1 
I 
1 
I 
I 
I 
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outward normal. 

velocity between 

the total number 

Rarefied Gases 

For those molecules having 

in V at any time is 

d ? ( l )  dV . The flux of such 

10 

molecules through the surface S is 

Is ( < ( l ) -  S ) n f ( <  +( ' ) ) d?( ) dS. Let further the rate that such molecules a re  

created in a small volume element dV , through collisions, be denoted by 

+ v - n f l ? ' )  = - nf a l  a - 
at nfi at 1 coll. 

(IV. 1) 

where f 

in the derivation, the Boltzmann equation becomes 

f (z ( ' ). In Cartesian coordinates, since $( ' is a constant vector 
1 

(IV. 1)' 

where x1 are the Cartesian coordinates, P! ) the Cartesian velocity components 
1 

of 3 ( , and the convention of summing eve; identical suffixes is adopted. In more 

abbreviated form, this is sometimes written as 

axi ' 

The evaluation of the collision terms in the right-hand side of the Boltzmann 

equation of course requires detailed treatment. A molecular model must be chosen 

first of all. 

the following assumptions: 

The dynamic processes of collision a r e  usually simplified by making 

( 1 ) only binary collisions occur, and ( 2 ) molecular chaosii prevails. The 

second assumption means that the joint probability of finding two molecules having 

f ( ).and ?( ) , resp. , gaAEkrfau???i&e i s  simply the product of the individual 

probabilities as if the other w e r e  absent. 

cer in la e 

Physically, it amounts to the supposition 
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that except during collisions, the molecules a re  uncorrelated with each other. 

assumptions a re  valid so long as  Xt / F  7> 1 

been examined in detail by Jeans ( 1925, Chapter IV) . 

Both 

the second one in particular having 

We shall only briefly sketch what the collision term looks like. The force field 

of each molecule is  taken to be conservative and spherically symmetric. 

collision between two molecules of velocity 7'') and 7 
F")' 

The binary 

turns *( < ) into 

and 3(2 )  into A 5 ( 
' 

and may be represented schematically a s  

( 1 , 2 )  + ( 1 ' , 2 S )  . 
We refer to this as a "direct collision", causing the loss of molecules f ' l t t .  

of the conservative nature of the process, obviously an "inverse collision" can also 

happen, i.e., 

Because 

( I P ,  2 ' )  - (1 ,  2 )  9 

causing a gain of molecules I ' l l 1  . 
depend upon the available number of the participants, as well  as  the relative speed 

fi between the two molecules and "cross section'' 

target area. Thus, the total number of class 11111 molecules lost in dV during time 

8t , through direct collisions with all possible molecules of class "2" is 

The total number of either type of collisions must 

S representing the effective 

( I V . 2 )  

f denoting f ( '2 ) ) . Similarly the gain of molecules of class "1 'I in dV 
2 

during 6t ~ through all inverse collisions involving Is and 2' is 
P 

Note that since (1 ~ 2 ) -j ( 1 9  , 2' ) , for given $ *( ) the inverse collisions must 

be summed up over all pairs of the 1' - and 2' - molecules through the choice of 

molecules of different ? ( 2 ) .  However, the details of the collision process show 

that 

Thus the gain of class t l l l l  through inverse collision can be recast a s  

8 5 4  
~ 
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Consequently, the right -hand side of the Boltzmann equation can be put into a more 

convenient form and Eq. (IV . 1 ) becomes 

(IV. 3) 

In the case of gas in equilibrium, the left -hand side of Eq. ( IV. 3 ) vanishes. 

A possible solution is obtained by setting the integrand in the right -hand side to zero. 

The procedure amounts to the assumption that each direct collision is exactly balanced 

by its inverse, often referred to a s  the "principle of detailed balancing". A s  applied 

to Eq. ( IV . 3 ) , the solution of 

f l f 2  - f ' f '  = 0 
1 2  

is in genera! the !sea: M2xwe::iZE distribution f ( O ) ,  Eq. ixI.1oj, anciprovecito 

be unique ( Jeans, 1925, pp. 25 - 28; Grad, 1949 ). 

requirement, naturally the mean velocity U and temperature T here must be 

independent of space and time.. To justify the "principle of detailed balancing" 

in this case, it should be mentioned that a consequence of Eq. (IV. 3 ) is "Boltzmann's 

H - theorem", showing essentially that any distribution should indeed tend to f 

through the collisions. For further discussions of the theorem, see e.g. Chapman 

and Cowling ( 1952, Chapter 4 ). 

To satisfy the equilibrium 
t 

(0) 

It is observed that the expression (IV. 2 ) expresses the total number of 

collisions involving the class "1" molecules. 

collision frequency 8 
1 

Therefore we may introduce an average 

for a class 8'118 molecule, and it must be given by 

(IV.4)  

Formally then, the Boltzmann equation may also be written as 

D1nfl = - 8  1 1  [ n f  - n f '  1 ] (IV. 5 )  

where T 
and has the significance of an average distribution function for the outcome of the 

is to be obtained by identifying the right -hand side with that of Eq. (IV. 3), 
1 

( 
1 

) as the number of collisions inverse collisions. The property that f' + f 

increases should be kept in mind. 
1 

We note that according to Eq. ( IV . 4  ) , the collision frequency is directly 
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proportional to the number density. In the other limit of 0 + 0 for extremely 

rarefied gases the "free molecule flow" is obtained by setting the right -hand side 

of Eq. ( IV. 5 ) to zero, neglecting the collisions completely. 

then is propagated without change in the direction 3' ) and at the speed 1 'f I . 
By turning Eq. ( IV  e 5 ) into an integral equation, a first order correction for "near 

free molecule flows 

solution to evaluate nf see, e.g. Wi l l i s  ( 1958 ) . 

1 

The property nf 
+(I) 

may be obtained through iteration, using the free molecule - 
1 ,  

V. The Maxwell Transfer Equations and the Hydrodynamic Equations 

The Boltzmann equation is a nonlinear integro - differential equation, evidently 

very difficult to handle. In flow problems, however, the complete information given 

by the distribution function is much too detailed and more than necessary. Our interest 

in most cases is in the average properties of all the molecules within a "fluid element", 

such as the temperature T and velocity U .  To deduce equations governing these 

averages we turn to the Maxwell transfer equations. 

ing the Boltzmann equation by any function Q ( 7 *( ' ) ) and then integrating over the 

velocity space 7' ) 

from Eq, (IV, 3 )  i s ,  dropping the superscript ( 1 ) on < 

+ 

These are obtained by multiply- 

Since Q ( -'( < ) ) is independent of space and time, the result 
7 ( 1 )  

The term 

rather lengthy expression, to be examined immediately. 
<A nQ> collm 

on the right -hand side is simply an abbreviation of the 

Written out in full. the term is 
Q1n 2 [f; f; - f l f 2  ] J2S d?") d?(2) ,  

+ ( 2 )  
6 "Q)COll. 

Q, standing for Q ( $( ) ) . Since the integration is over all ?(l) and 7 , 
the roles of fllll and 1 1 2 1 t  may be interchanged without affecting the result. 

alternatively, 

Hence, 

We next note that when *( ' )  5 and 5 take on 

and z (2) '  . But, 

- (1 1 '  all possible values, so do 5 
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4 
( 1 , 2 )  ( 1 ' , 2 ' ) .  

If instead all the inverse processes are considered, the integral may also be 

expressed in 

Again interchanging the suffixes "1" and "2", w e  get still another form: 

Finally, a form symmetrical with respect to the indices 011' and 11211 is obtained by 

using the arithmetic mean of the four equivalent expressions: 

Eq. ( V .  2 ) explicitly shows that if Q is a dynamical property which is a "collisional 

invariant [I, i. e. , 

Q1 +Q, = Qi +Qi 
then (b. nQ )toll. vanishes. This is, of course, to be expected. The right-hand 

side of the Boltzmann equation is the net change of the number of molecules with 

velocity f '  ) . When multiplied by Q, and summed over all the molecules, the 

result is the net change of the property Q for the aggregate due to collisions. If the 

sum of Q does not change in any collision, the total cannot change for all the collisions. 

For conservative systems the collisional invariants a r e  mass m , momentum 
1 2  m? and energy ; mS . With Q = m , Eq. ( Y .  1) gives the "continuity equation" 

in conventional gasdynamics , 

u. = o ,  (V.3) 
b a 
a t P + z p  1 

1 + 
where U. a r e  the Cartesian components of the mean o r  fluid velocity U .  With 

j L  
Q = m y  , there follows 

- a ;+a < c . ? > = o .  
at P ax.? 

1 
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Let us write 
+ + +  7 = U + c , or in Cartesian components, 

5 = u . + c  i 1 i '  
3 where c is the ''thermal velocitytt,  and obviously <ci) = 0. Then the transfer 

equation for momentum may be recast in Cartesian coordinates after making use of 

Eq. ( V  . 3 ) , into the conventional form 
b a a 

p [ p J i + u i g u . ]  = z P i j  
i J 

j 
where P 

and is seen to be given from the molecular viewpoint by 

may be identified with the stress tensor in conventional gasdynamics, 
i j  

= - p (c .  c .>  * 

'i j 1 J  
and P Eq. (V.  5 )  gives 

pll ' p22 33 , If w e  sum the three tlnormal stresses" 

P.. 11 = - p < c i  2 ) =  -p< C2>. 
n 

But <c"> = 3 / 2 p  = 3RT , and from the perfect gas l a w  p = P R T .  Hence, as 

is usually defined, w e  also have 
1 p = - -  p 
3 ii * 

After taking the pressure out, the kinetic expression for the l'viscous stress tensor" 

is found to be 

P '  i j  = -p<c ic j )  + Si jP  

where 6.. = 0 for i # j ,  8 . .  = 1 for i = j .  
1J 0 1J 

Similarly, for Q = rn5 / 2 , the transfer equation can be manipulated into the form 

of the conventional "energy equation." , 

where d is the "dissipation function", 
? au: 

3 
=P and q is the "heat flux vector", kinetically expressed as 

+ 1 2  
q = -p<; c a > . 

In general Eqs. ( V .  3 ) , ( V . 4  ) and ( V . 7 ) are called the "hydrodynamic 

equations1I, describing the change of the fluid dynamical properties p , 3 and T 

in terms of the stress tensor and the heat flux vector. If the distributian function 

8 5 8  

1 
I 
1 
1 
1 
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is assumed to be a local Maxwellian, it is easily verified by direct calculation that 

P. .  = q. = o , corresponding to the inviscid and non heat - conducting approximation. 

When deviation from the local Maxwellian is small, w e  shall see that the Navier - 

Stokes and Fourier laws emerge. 

to be no other course except through further analysis of the Boltzmann equation to 

achieve an adequate approximation of the distribution function. 

1 

11 1 

When these are no longer sufficient, there seems 

VI. Asymptotic Expansion for Near Maxwellian Distributions 

To begin with, let us recall the Boltzmann equation in the form of Eq. ( IV. 5 ) , 
.. 

D nf = - 8 .  [nf -nf 1 .  1 1  1 1 

The left -hand side must have a time constant e characterizing the change of the 

function nf a s  an overall phenomenon. The time constant on the right -hand side 

is an average of the velocity -dependent collision time 1 / el , representing the 

details. 

two time constants. Let us assume that all 8 ' s  a r e  0 ( s )  , an average; the 

ratio is then 1 1 '  

1 

Thus the solution must behave differently depending on the ratio of these 

1 
E = 1 /F s. When E<< 1 , it is further expected that f f (0) 

Restricting to E << 1 ~ a natural procedure therefore is to seek an asymptotic 

expansion of f ,  in ascending powers of e : 

(VI .  1)  

We now revert to Eq. ( IV. 3 ) , noting that the left - hand side is 0 ( c) , compared 

to the right -hand side and that f ( O  

Eq. (VI .  1 ) into Eq. ( IV. 3 ) , to 0 ( c  ) the equation becomes 

is a solution for  c = 0 .  By substituting 

A slightly simpler expression results if we  set  E f ( ) = f ( 

6 is 

6 . The equation for 

The left-hand side being known, Eq. (VI .  2 ) is a linear integral equatian of the 

Fredholm type. If f (O) is chosen to be indeed the iilocal Maxwellian", 
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Then $ must satisfy the following: 

( f ( ' ) $d{=  0 ,  (f(O'$?d?= 0 ,  l f ( o ) $ 6 2 d i =  0 .  (VI.3)  

Eq. (VI. 3) turns out to be sufficient to guarantee a unique solution of Eq. (VI 2 ) 

( Chapman and Cowling ( 1952 ) ) 

solution satisfying Eq. ( VI. 3 ) . 
In fact all that is needed eventually is a particular 

The result is the famous Chapman - Enskog solution. 

The particular solution of course depends on the explicit form of the left-hand 
( 0 )  , side of Ea. l VI.  2 1. Evaluating D . nf- 

This expression enables us to be more specific about the time constant F. 
the two terms in the bracket, it is seen that 

From 

where T is the characteristic temperature level of the flow, A T and A U are 

the temperature and velocity ranges, resp. and L is the characteristic length. 

Inorder tha t  f =  1 / 7 0  %/c zL41, wemustrequire  ( l / L ) ( A T / T ) C L  1 

and ( A  / L ) ( A U /cm ) << 1. 

the Chapman - Enskog solution improves as A T / T and A U / c become 

smaller. 

m 
For a fixed JSnudsen number / L , the accuracy of 

m 

We shall not go into the details of solving $ from Eqs. (VI. 2 ) and (VI. 3 ) 

for which the reader should consult Chapman and Cowling ( 1952 ) . It suffices for 

our purposes to note that, because of the form of Eq. (VI.  4), it is possible to 

represent $ by 
$ =  - A 9  a-LJi c - V In T - B bij 

9 

A and B being two scalar functions of the t h e r i a l  velocity d. Once A and B 

are determined, by Eqs, (V.  6 ) and ( V  e 8 ) the viscous stress tensor and the heat 

flux vector may thus be calculated. Indeed, these assume the same expressions as 

1 
I 
I 
1 
1 
I 
I 
1 
1 
I 8 6 0  



Shock Waves in Rarefied Gases 18 

the Navier -Stokes and the Fourier laws: 

aT  = k -  
'i bXi 

(VI. 5) 

and the viscosity coefficient /u and the coefficient of thermal conductivity k are 

obtained from the functions B and A , resp. , through quadrature. The Chapman - 
Enskog solution, i.e., to 0 ( c ) only, brings out thereby the restricted validity of 

the conventional gasdynamics, as well a s  provides a theoretical means of evaluating 

,u and k with suitable choices of the molecular model. 
2 

When the solution is carried out to 0 ( C  ) , the details a r e  even more tedious 
I 

and the resulting formulae for P , .  and \ a re  necessarily much more complicated. 
13 

Because $ contains the spatial gradients of temperature and velocity, the left - 
hand side of the Boltzmann equation now includes second derivatives and products 

of first derivatives of these mean flow variables. 

hand, turn out to be always capable of elimination in favor of the spatial derivatives. 

The viscous stress tensor and the heat flux vector a r e  thus dependent only on the 

spatial variations of the mean flow variables. This peculiar set of solutions is 

The time derivatives, on the other 

sometimes referred to a s  "normal solutions1'. When the P.! and qi from the 

solution to 0 ( e ) a re  substituted into the hydrodynamic equations, the result is 

known as the ''Burnett equations". 

boundary conditions than the Navier -Stokes equations are generally required, and 

therefore to be formulated for the solution of the problem. But, although to 0 ( e  ), 

if Eq. (V. 1 ) is regarded a s  an asymptotic expansion, the Burnett equations do not 

necessarily provide better accuracy. 

1J 2 

Since higher order derivatives occur, more 

2 

We shall now apply the Navier  -Stokes equations to the one - dimensional 

steady shock problem, which may be stated as follows : Given a uniform stream 

of velocity U pressure p density 

Pa * 
smooth transition into another uniform 

stream downstream. The final velocity 

Ub, pressure p and density p must 

3 a '  a '  
find the solution which permits a 

a U 

V ,X 
b b 

863. 



Shock Waves in Rarefied Gases 19 

satisfy the conservation laws of mass, momentum and energy, and may thus be 

regarded as included in the data 

and p etc. ( i .e .  , betNeen the downstream and up- between U and Ub, pa 

stream quantities ) a r e  the Rankine - Hugoniot relations 

is the Mach number, 

Ua , pa and pa.  A s  is w e l l  -known, the relation 

b '  a 
in which the key parameter 

M a = U a / d m ;  
and, to require the entropy change s - sa > 0 , we must have Ma > 1 , then Mb< 1 .  b 

The detailed calculation has been carried out by various authors. Let the 

attention be focused on a "shock thickness" L defined by the maximum slope and 

the asymptotic values of one of the flow variables, say U , as sketched. 

explicitly writing out the governing equations 

information from simple dimensional reasoning. 

material properties ,u 
a 

for a given gas) , the flow may be characterized by the prescribed U 

But a result of the Chapman - Enskog solution is that /u and k are in fact propor- 

tional to each other. 

Without 

we are content with some general 

The gas is characterized by its 

and ka (both a r e  functions primarily of the temperature 

and M . a9 Pa  a 

Hence the solution must yield 

By dimensional homogeneity, it follows 

the above predicts Since P a N  Paha", 9 

L - A a F ( M  ) .  a 
The detailed calculations give 

conclude that according to the Navier - Stokes equations the shock thickness is 

0 ( la ) -- in other words, most of the changes occur within a distance comparable 

to the (upstream ) mean free path. 

difference between T and Tb o r  U and Ub is small, the restriction 

E C <  1 will be violated, and the significance of the result is open to question. 

F ( M a  ) 0 ( 1 ) for all finite M 7 1 .  Thus w e  a 

However, except for weak shocks where the 

a a 

The Burnett equations have been applied by Zoller (1931 ) to the shock problem, 

which happens not to have any ambiguity regarding the boundary conditions. The 

8 6 2  
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selection gives a somewhat larger shock thickness at  the lower Mach numbers, but 

predicts oscillations in the profiles at M about 1.3 and breaks down when M 

goes beyond about 2 .  

rather peculiar results. (See, e.g., Sherman and Talbot ( 1960). ) As a test case, 

it is often thought of a s  an indication that the asymptotic expansion perhaps should 

not be carried beyond the Chapman - Enskog level. 

a a 
Available experimental evidences do not support the last two 

VII. Methods Based on the Moment Equations 

Abandoning the expansion in t e rms  of a small parameter e ,  we look for 

alternative ways of finding an approximate solution of the Boltzmann equation, 

E q .  ! I V  . 3 ) .  Similar tc! the Rayleigh - Eitz or Galsrkin methods eften used in, e.g., 

vibration problems, a trial function with a number of adjustable parameters may be 

assumed, and the latter parameters are to be so chosen that the exact differential 

equation wil l  be satisfied in some average sense. Now the Maxwell transfer equation, 

Eq. .( V .  1 ) , may be interpreted as an average of Eq. (Tv. 3 ) in the entire velocity 

space when the weighing factor is chosen to be Q , including as special cases the 

hydrodynamic equations, Eqs. ( V . 3 ) , ( V . 4  ) and ( V .7 ) . 
Q , U. , and T may be thus interpreted a s  the "adjustable parameters" present in 

the trial function, as indeed also the viscous s t ress  tensor PI. and the heat flux qi. The 

hydrodynamic equations unfortunately a re  too few in number to determine uniquely 

all these parameters, except when P!. and qi a r e  somehow related to the other 

parameters, for instance, through the Navier - Stokes and Fourier laws. More 

equations, of course, could be generated by other choices of Q in Eq. ( V .  1 ). 

On the other hand, for each Q there seems to be no mathematical reason that the 

Boltzmann equation must be averaged throughout the entire velocity space. If the 

velocity space is split in two, s a y  

we get two equations: one from the integration in subspace 5 '0 and one from 

the integration in subspace f, < 0 .  All such equations wil l  be referred to a s  the 

"moment equations", of which the Maxwell transfer equation itself becomes a 

special case. By "moment equation method" we mean in general that after assuming 

a trial function as  the approximate solution, the parameters a r e  determined through 

The mean flow variables 

1 

1J 

13 

> 0 and 5 4 0 ,  for  every one of Eq. ( V .  1 ) 1 1 

1 
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the choice of a sufficient number of moment equations of one type or  another. 

For practical reasons the number of parameters in the trial function will have 

to be rather limited. 

the choice of the trial function and the moment equations. 

to incorporate in the trial function as many as possible of the features of the expected 

solution. There is yet no guidance on how best to choose the moment equations. But, 

in contrast to the asymptotic expansion, its applicability is not restricted to any 

special segment of the entire Knudsen number spectrum. 

The accuracy therefore would be quite profoundly affected by 

It is obviously desirable 

( A  ) Grad's Thirteen Moment Equations 

A s  alluded to in the above, by examining the hydrodynamic equations, it would 

be natural to take the flow variables p , U. , T , as well as P 

parameters in the trial function. 

Because of the symmetry the apparent number of parameters is 14. 

however, is redundant, since p = p R T  = - (1/3 ) P.. . The net number of parameters 

is therefore 1 3 ,  and eight more moment equations a r e  needed beyond the hydrodynamic 

equations. 

Q = c. c and c. c ~ Out of the nine equations that result, one of them is also 

redundant because the "energy equation" , Eq. ( V  . 7  ) ~ from Q = c.  c is already 

accounted for. 

and qi as the 
1 i j  

This is precisely what Grad ( 1949 ) proposed to do. 

One of these, 

11 

Grad's choice was to use again the Maxwell transfer equations but with 
2 

1 j  1 

i i  

More specifically, the distribution function which Grad took as the trial function 

P '  c . c  4 q i  i 5 c 

5 PCm c m 'm 'm 

i j  2 is of the form 
C 

2 1 ( V I I . 7 )  - 
f = f  (0) [ 1 + - - -  ' 2 -  2 ) - p  

where f (O' is the local Maxwellian, and c 

2 calculated with verified that the averages - p <c. c.) and - ,o(( 1/2 ) c. c > = 1 /@ as before. It is easily 
m 

1 J  1 

Eq. (VI1 .l ) are in agreement with the definitions of PJ. and q according to 
11 i 

Eqs. ( V  . 6 )  and ( V .  8 ) .  In fact, it might be remarked that Eq. ( VI1 . 1 ) could be 

written down directly from the Chapman - Enskog solution by replacing the velocity 

and temperature gradient terms in the latter with P!. 

Generalization of Eq. (VII. 1 ) is possible, as  Grad pointed out, by including in the 

bracket higher order polynomials in c 

and q. through Eq. ( V I .  5 ).  
1J 1 

orthogonal to the terms present ( the i 

$ 6 4  

1 
I 
I 
8 
I 
1 
1 
I 
1 
1 
I 
1 
1 
1 
I 
I 
1 
1 
1 
~ 
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"Hermite polynomials"), amounting to a ser ies  expansion of the correction to the 

local Maxwellian in terms of these polynomials. 

moment equations will then be required. ) By limiting to Eq. (VII . 1 ) , the deviation 

from the local Maxwellian therefore is implied to be relatively small. 

(Additional parameters and 

With Q = m c .  c , Eq. (V. 1 ) becomes 
1 j  

o r  

The left -hand side averages can also be evaluated with Eq. (VII. 1 ) but the right - 

hand side depends on the molecular model. 

called Maxwell molecule, which repels another like molecule with a force proportional 

to r , r being the distance between the two molecules. For such molecules, the 

equation finally may be written as 

The most convenient model is the so - 

-5 

2 u P?. + - - P?. + - at IJ 8%- k iJ 5 
a a 

K a U; 2 
3 IJ k4 
- 6.. P '  

6 i j  - )  ax, 

(VII.2) 

where /L  ̂ denotes the expression that gives the viscosity coefficient according to the 

Chapman - Enskog solution for the same molecular model. Likewise, with 

(VII.3) 

From Eqs. (VU. 2 ) and (VII. 3 ) , we see that in Grad's solution, there is considerable 

interaction between the stress tensor and the heat flux. More striking when compared 

with the Chapman - Enskog solution is the presence of the explicit time derivative term in 

both equations. Thus, if there a re  no spatial variations, the equations reduce to 



Shock Waves in Rarefied Gases 23 

i:qi *j’ a 
- q .  = - -  at 1 

A relaxation phenomenon, non - existent in the Chapman - Enskog solution, is now 

predicted. The time constant is 0 (,p/p ) . Since /c” p C 2, 

which is of course the expected order of magnitude following Eq. (IV . 5 ) as  

discussed in the previous section. 

in particular P!. and qi are found to have somewhat different relaxation times. 
1J 

But here the result is more quantitative and 

Of considerable interest is the fact that the Chapman - Enskog and 

Burnett formulae for PI. and q can be obtained from the Grad equations, even 
1 J  i 

though the Grad equations a re  obtained from a distribution function, Eq. (VII. 1 ) , 
that is at the level of the Chapman - Enskog solution only. This is done by regarding 

Eqs. ( VI1 . 2  ) and (VI1 3 ) as  definitions for the right -hand side quantities, namely, 

P!. and qi .  If P t  and q are small, the effects of the presence of these 
1 J  i j  i 

quantities in the left -hand side may be determined through an iteration process , 

starting from P I  = q. = 0 

Stokes and Fourier laws. 

eliminating ( a U .  /6t ) and ( l3T /at ) by means of the hydrodynamic equations. 

This feature of the Grad equations is the effort in achieving the Chapman - Enskog, 

not to say the Burnett, solution, it also demonstrates the power of the moment 

equation method when properly used. 

The first iteration then gives precisely the Navier - 
i j  1 

The second iteration gives the Burnett result, after 

1 

Ne skip o v e r  the question of the boundary conditions for the Grad equations, 

A s  applied to the one - which have been examined to some extent by Grad himself. 

dimensional steady shock problem (Grad ( 1952 ) ) at lower Mach numbers these 

equations yield solutions which are rather close to the Navier - Stokes result, giving 

a slightly larger shock thickness; but for Mach numbers greater than about 1.65 ,  

again no solution can be found. This is to some extent rather disappointing. The 

difficulty could only be attributed to the chosen form of Eq. (VII. 1 ) , which ceases 

to provide a good approximation when the molecules are far from being in a state 
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of quasi - equilibrium. 

downstream conditions a re  not too different from each other, the distribution any- 

where within the shock thus deviates little from an average constant Maxwellian. 

Such is, of course, far  from being the case for large Mach numbers and stong shocks. 

For lower Mach numbers, i.e. ~ weak shocks, the up- and 

( B ) Mott - Smith's Bimodal Distribution 

We now recognize that for strong shocks a trial function not restricted to quasi - 

equilibrium is necessary. A very simple choice was offered by Mott - Smith (1951 ) , 

who assumed that it might be taken as a linear combination of the up- and downstream 

distribution functions, 

(VI1 . 4 )  f = (;r ( X ) f ( O ) + L t b ( X ) f b  ( 0 )  
a a 

where o( (x) and a ( x )  are the adjustable parameters. However., since 

(f d? =a(f(o)dT a = {fio'd? = 1, w e  require 
b 

+oc  = 1 ,  (VII. 5) 'a b 
If the x-axis is in the direction of flow, the boundary conditions a r e  

x + - a > ,  q b + O ;  

x + + a , ,  oc 2 0 ,  W b + l .  a 
(VII .  6,) 

The "bimodal" nature is clear,  a s  for given x the molecules may be regarded as 

a mixture of two groups maintaining either the up- o r  downstream charaoteristics. 

There is now in effect only one adjustable parameter. To determine this 

parameter, Mott - Smith left the hydrodynamic equations alone but employed a 

moment equation obtained from Eq. ( V  . 11 ) with Q = r1 , or  5 
solved by imposing Eq. ( VI1 . 6 ) . 
Rankine - Hugoniot relations, expressing all downstream properties in terms of those 

upstream. A solution for o( say, at all M 7 1 w a s  shown to be possible and the 

flow variables computed as averages. The shock thicknesses so determined from the 

two choices of Q differ between themselves by 10 to 25 percent depending on M . 
This difference, of course, reflects the uncertainty due to the arbitrariness in 

choosing Q . 
criterion for the selection (e.g., Rosen ( 1954 ) , Sakurai ( 1951 ) ). More realistic 

molecular models have also been used in evaluating the collision terms of the moment 

2 3 , which then w a s  

The hydrodynamic equations provide as usual the 

a '  a 

a 

There have been consequently discussions attempting to arrive at a 
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equation (Muckenfuss ( 1960 ) 1- 

shock thickness is much greater than that from the Navier -Stokes o r  Grad equations, 

and generally considered inaccurate, 

figure. 

At  the lower Mach numbers, the Mott -Smith 

A comparison is shown in the accompanying 

A point worth noting, however, is that with a single adjustable parameter the 

Mott -Smith distribution function can hardly be expected to be accurate in the details. 

Since p 
a re  not satisfied anywhere within the shock, except for the finite changes between the 

up- and downstream conditions. An alternative avoiding this difficulty seems to be 

that the approximate distribution function might be used only for the viscous stress 

and heat flux terms needed in the hydrodynamic equations, which then can be solved 

in much the same manner a s  with the Navier -Stokes equations. 

necessarily satisfy the Rankine - Hugoniot relations. 

U , etc, a r e  found by averaging Eq. (VI1 . 4  ) , the hydrodynamic equations 

The result will  also 

( C  1 Methods Using Half -Range Distribution Function 

W e  have mentioned that the shock wave is a convenient example in rarefied 

gasdynamics because of the absence of solid boundaries. 

present, the molecules rebound from, or rather a r e  emitted by the solid boundary, and 

usually have "forgotten" most of their past history. 

solid boundary, therefore , the distribution function would be discontinuous in the 

velocity space, in the sense that those moving toward the solid boundary and those 

going away from it would require quite different expressions. An expansion of the 

Grad type in terms of continuous functions, Eq. (VI1 1 ) for instance, would need 

a very large number of terms to approximate a discontinuity adequately. 

discontinuous nature is recognized beforehand and taken care  of separately, however 

the remainder would be much easier to approximate. 

When a solid boundary is 

In fluid elements near to the 

If the 

This observation was exploited by Gross and Ziering ( 1958 ) in their investi- 

gation of several problems involving the 4 Y t, 
geometry of t w o  parallel plates when the 

gas in between may be highly rarefied. 

Let the direction normal to the two plates 
/ 'I 

be x .  The molecules a r e  assumed to be /i 
. $ 6 8  , .  

I: 

I 
I 
I 
I 
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composed of two groups according to the sign of 'i 
function we write 

Then for the distribution 1' 

n f  = n + f +  for rl ? O  - _  (VII. 7 )  

where n+ a r e  functions of x , and f, a r e  defined only in the half spaces 

p, 2 0 , resp. , hence referred to a s  half - range distribution functions. 

f, used by Gross and Ziering a re  expressed in terms of the Hermite polynomial, 

similar to Eq. (VI1 . 1 ) , slightly modified because the orthogonality condition now is 

to be applied in the half spaces, 

number of parameters in the expansion, evidently the half - range distribution function 

contains twice as many unknowns; consequently, twice a s  many moment equations a re  

needed for their determination. 

transfer equations, Eq, ( V  1 ) 

halves of the velocity space separately. In a Grad -like expansion of the half - range 

distribution function, the adjustable parameters lose the physical significance as 

corresponding to P!. , , etc. , which are ,  by definition, the averages over the 
11 

whole velocity space. 

- - 
The functions 

- 

Compared with Grad's approach, with the same 

Gross and Ziering then split up each of the Maxwell 

into two by carrying out the integration in the two 

Application of the technique has been limited to sevaral "linearized" problems 

where the relative velocity or the temperature difference of the two plates is small. 

In such cases,  the half - range distributions were expanded around a constant 

Maxwellian, and the calculation was rather straightforward. 

An alternative choice of the half - range distributions in Eq. (VII. 7 ) is the Ittwo - 
stream Maxwellian distribution proposed by Lees ( 1959 ) .  The form is taken to be 

(VII. 8 )  f +  = ( $ )  + 3/2 exp [ - p +  (?-$?I  
- - - 

where p +  and u+ are the adjustable parameters, in addition to n+ ,  to be - - 
determined by the moment equations. In fact, to generalize the method Lees adopts a 

"line of sight principle" which divides the molecules into groups as  if in f r ee  molecule 

flow. In the problem of the gas between parallel plates, there a r e  thus the Same two 

groups in the half - range representation of Gross and Ziering, each moving toward 

one of the walls. For the case of an arbi- 

t ra ry  body moving in an unbound gas region, 

at  the given point P a pencil of rays may 

be drawn to form a cone tangent to the body. 

These molecules in a volume element at P 

8 7 0  

~ 
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coming from the body, if  in free molecule flow, would have theic velocity lying within 

the cone 0. 
The "dual - range" character of the distribution i s  then expressible in the same form 

as Eqs. (VII. 7) and (VII. 8 ) ,  except replacing suffices l l , f l  by suffices 111" and v'IIsl .  

For the needed moment equations Lees prefers to maintain the whole - range transfer 

equations, Eq. ( V  . 1 ) , with successive Q 1s similar to Grad's that led to the thirteen 

moment equations. 

ten parameters n 

nificance as physical observables except in dimension. 

tions corresponding to Eqs. (VII .  2 ) and (VII.  3 ) as  expressions for P!. and qi 
1J 

irl teriils of the left - h a d  side terms, w e  are inclined tc; zonclxie that, together ;vith 

the hydrodynamic equations, there still should be thirteen equations for the thirteen 

variables (p,  Ui , T , P!. , ~i ) at this level of approximation. In general the ten 

parameters inherent in the "two - stream Maxwellianl' appear too f e w  in number to be 

really self - consistent. When applied to the parallel plates problem with large relative 

velocity, some difficulty w a s  indeed experienced by Lees and Lin (1961 ). Their 

mention of the possible improvement by using skewed "two - stream Maxwellians If  

amounts to an effort toward additional degrees of freedom. 

These a re  taken by Lees a s  group I .  The rest  a r e  all taken as group 11. 

In contrast to Grad's distribution, there a r e  now, however, only 

none of which, it may be noted, has any sig- 

Regarding the transfer equa- 

and 3 
1,II , BI,II 1,n ' 

11 

A further point of criticism may be directed at the "line of sight" principle. 

The grouping of molecules following this principle is of course correct in the free 

molecule limit o r  very close to the body surface, but the principle seems to be rather 

irrelevant after the molecules have gone through several collisions. Its consequences 

therefore need not agree with the result from the Navier -Stokes equation in the 

conventional continuum limit. This drawback is illustrated in the problem of the 

cylindrical Couette flow ( i n  the annulus between two rotating concentric circular 

cylinders ) investigated by Ai ( 1960 ) . 
In spite of these objections, the "two - stream Maxwellian" is relatively easy 

to work with and together with the "line of sight" principle can be used to set up, at  

least formally, the governing equations fo r  flows involving arbitrary geometry and 

large deviations from quasi -equilibrium. It would be of interest to see the solution 

of the shock problem by this method, which unfortunately is not available, 
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VIII a The BGK Model Equation and the Shock Solution 

We have discussed above some of the approximate methods of handling the 

Boltzmann equation. 

simplifying the Boltzmann equation itself. 

tions is the BGK or Krook model (Bhatnagar et a1 ( 1954), Krook ( 1955 ) ) .  

ing back, we  have the Boltzmann equation, Eq. (IV. 5 ) , 

An entirely different approach is to t ry  for exact solutions by 

The most well  known of such simplifica- 

Look- 

The complications a r e  all contained in the right -hand side terms, which w i l l  now be 

approximated. 

First of all, the dependence of 0, on the molecular velocity <(l) is clearly 
I + - 

a matter of detail. It seems reasonable to approximate it bvith simply 8 ( r , t ) , 
an average for all molecules. To simplify the very complicated f the choice is 

made so as  to preserve the following important properties of the exact equation: 
1 '  

( c )  

Krook took 

A s  s -t 03 , f + f ( O )  ~ the local Maxwellian. 

= 0 for the Q>coll. In the transfer equation, Eq. ( V .  1 ) , < A 
3 2 

collisional invariants Q = m , m 5 , m c / 2  . 
There is an "H -theorem". 

directly f = f 'O) ; the model equation is thus 

( VIII. 1 ) 

That the right -hand satisfies the requirements ( a ) and ( b  ) is immediately obvious. 

It can be shown that condition ( c  ) is also fulfilled. The rate of change of the function 
nf is now proportional to its departure from the quasi - equilibrium distribution f (0) . 
Hence Eq. (VIII. 1 ) may be regarded a s  a relaxation model. The equation is, however, 

+ 
only apparently linear, since the parameters ,d and U in f (O) remain to be 

averaged over the unknown f .  

All  the previous approximate methods of treating the Boltzmann equation can, of 

course, be applied to Eq. (VIII. 1 ) .  

instance, is obtained by writing 

The Chapman - Enskog type of solution, for 

By substitution into Eq. (VIII. 1 ) , the solution for c f  (') is explicitly given a s ,  

dropping subscript "1" , 8 'I' 2 
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( VI11 . 2 ) 

The dependences on the mean flow gradients 0 In T and aU. /ax.  follow from the 

same term 0 nf") as  in the Chapman - Enskog solution. The Navier -Stokes and 

Fourier laws a re  consequently recovered, except that the viscosity coefficient and 

the coefficient of thermal conductivity a re  more crudely predicted. 

1 J  

The thirteen moment equations of Grad can also be derived for Eq. (VIII. 1 ). 

The left-hand sides of Eqs. (VII. 2 ) , (VII. 3 ) a re  unchanged if Eq. (VII. 1 ) is 

maintained. The right -hand sides depend on the details of collisions but with Eq. 

(VIII. 1 ) they can be written down by inspection. 

and (VII. 3) a re  thus found to be 

The counterparts to Eqs. (VI1 . 2  ) 

- 3 - P:. + A . .  = - e P:. at 1J ZJ 
- a t q i + B i = - e %  a ( VI11 . 3 ) 

where A . .  and B. stand for all the terms except the time derivative in the left - 
hand sides of the corresponding Grad equations. 

the two relaxation times P / p  and (3/2 ) (/LL/p) with a single time constant 

1 /s. :Dr this reason, the Krook approximation is sometimes referred to a s  the 

single relaxation model. The comparison also suggests that the average 8 may 

be taken to be 

1J 1 
The only difference lies in replacing 

- 

(VI11 . 4 ) 
depending on whether P!. or  q. is the dominant feature. 

1J 1 
In the near continuum regime which is adequately described by the Grad 

equations, the difference between the BGK model and the Boltzmann equation amounts 

thus to a difference in the Prandtl number Pr z / u C  / k .  

for monatomic gases while from the BGK model the Prandtl number will be unity. 

The regime of f r ee  molecule flow in the limit 0 + 0 is unaffected by the approxi- 

mation. Its validity in the transition regimeis rather difficult to assess ,  although 

The correct value is 2/3 
P 

1 

the common belief 

The integral 

applications. For 

is that it should serve as a reasonable interpolation. 

equation form of 

brevity consider 

Eq. ( VIII. 1 ) has been the basis for a number of 

the steady flow problem: 
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8 '1' 4 L ~~ 

( VI11 0 5 ) 
*(I) where s is the distance along the direction of 0 . Direct integration yields, 1 

after dropping the subscript "1" , 

nf - n'f' exp [ - Is; 6 ds /< 1 
( VI11 6 ) 

s -  
+ exp [ - 0 ds /5  ] nf ( O )  exp [ /,T 0 ds /p ] 0 ds 4 

S' 

where the boundary condition nf f at s = s' is assumed given, The integral 

s ds / s  represents the number of collisions for such molecules in traveling 

the distance between s and sV and the exponential factor i s  the probability that 

the molecules from s9 should survive, The second term is the gain of such mole- 

cules as  collision products. Since the unknown functions n and f a r e  involved 

in the latter, usually an iterative procedure is necessary to achieve a solution. 

near free molecule o r  near continuum flows, a good initial approximation of nf 

is immediately available. 

have to be found by first doing a cruder analysis, such as the Lees method discussed 

before. Several problems of the flow between two parallel plates a re  thus solved by 

this method 0 e.g. Willis ( 1962 ) ) 

For 
( 0 )  

For the transition regime, the initial approximation may 

In applying to the shock structure problem, since the Navier -Stokes solution 

is reliable for the lower Mach numbers, and obtainable for any shock strength, it 

becomes an obvious choice as the initial approximation. 

Burgers ( 1956) in his analysis of the problem, but without actually carrying out the 

calculation. Recently Liepmann et  al. ( 1962 ) , apparently independently, solved the 

problem by the Sam6 procedure in a computer, taking 8 = p /& , i.e. , Pr = 1 ~ 

The solution shows no anomaly at least for Mach numbers a s  high as 1 0 .  A typical 

Such was suggested by 

- 

comparison against the Navier - Stokes 1 
Navier - 

Stokes Krook solution is schematically as shown. 

agreement with the Navier -Stokes profile 

is very close in the downstream half, but a b 

the upstream portion is considerably more 

The 
u -ub  
u - u  

spread out, especially at the higher Mach 0 

numbers, This is  understandable since the effective coordinate is really 0 dx ,  so 

1 
I 
1 
r 
1 
1 
I 
1 
I 
I 
1 
1 
I 
I 
I 
I 
I 
1 
I 
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I 

the physical distance should be inversely proportional to the collision frequency, hence 

the density, which value for the upstream portion is a small fraction of that for the 

downstream portion for the stronger shocks. 

The Liepmann solution of the shock structure based on the BGK model is 

unquestionably the most satisfactory to date. It is, however, only the exact solution 

of an approximation to the Boltzmann equation. 

IX. Further Discussion of the Approximate Solution of the Boltzmann Equation 

Attractive as the BGK model is, we must not lose sight of the fact that it does 

not replace the Boltzmann equation. Better and better approximate methods pre- 

sumably ceuld be develeped for the exact e q i a t i ~ n ,  md some of them v.:eu!d event.zally 

surpass the BGK model in accuracy. Thus, we return to a discussion of the possible 

improvement in approximate methods, especially from the viewpoint that these should 

be applicable throughout the range from continuum to free molecule flow, as the BGK 

model is. 

To gain some perspective, consider the simple differential equation 

df 
dt 

e - = - f + f ( 0 )  ( t )  
( I X .  1) 

f ( 0 )  given J 
where 

embodies the most important features of the Boltzmann equation, E having the same 

significance as  1 / s .  It i s  also an analog of the BGK model. The boundary condi- 

tion f ( 0  ) corresponds to the known distribution at  an initial instant, or the boundary 

s = s' as in Eq. ( VI11 . 6 ) . 
down: 

E is a constant parameter of arbitrary magnitude. * Eq. (TX. 1 ) evidently 

The solution of Eq. ( IX. 1 ) can be immediately written 

f = f ( O ) e  -t /c + - e  E 1 - t / q ;  f ( o )  et/c dt ( I X .  2) 

which may be regarded as the simplified version of Eq. (VIII. 6 ) . 
If t is kept fixed and finite, the asymptotic solutions for & + a, o r  c * 0 

a re  easily obtained from Eq. ( I X .  2 ) . For C 4 0 3 ,  the result is 

I am indebted to Prof. G. S .  S .  Ludford in calling attention to a very similar 
example in Erdelyi's paper on singular perturbations ( A t t i  Accad. Sci. Torino 

z 

- 95 ( 1 9 6 0 - 6 1 ) ,  651-672) .  
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(IX. 3 )  [ f ' O ) - f ( 0 ) ] d t + O ( ~ ) ,  1 

while for C + 0 w e  get 
df ( 0 )  2 

f f ( 0 )  - c r  + O ( C  ) .  (IX. 4) 

The first term of Eq. (IX, 3 )  corresponds to the F1free -molecule" flow approxima- 

tion, and the second term is the equivalent of the "first collision" correction usually 

obtained by one iteration from the free -molecule solution. In the same analogy, the 

first term of Eq. (IX ~ 4 ) corresponds to the local Maxwellian in quasi - equilibrium, 

and the second term is the counterpart of the Chapman - Enskog correction. Both 

types of asymptotic solutions, as w e  now see, a r e  not uniformly valid for all t .  

(Note, in particular, that Eq. ( IX,  4) can never satisfy the prescribed boundary 

condition f ( 0 ) ) For a given C however large, there is an upper limit of t 

beyond which the "free - molecule" type of asymptotic expansion ceases to be valid. 

In the other limit, for a given E however small, there is a lower limit of t below 

which the asymptotic expansion for small E is of no value, Although elementary, 

this demonstration seems to focus on some of the basic properties of the Boltzmann 

equation. 

"transition regime 

The pitfalls of trying to push either type of asymptotic expansions into the 

where c -0 6 1 ) , a r e  thus obvious. 

The situations for e + 00 and c + 0 are very similar to the problems of 

finding asymptotic solutions for low and high Reynolds numbers, resp. , in viscous 

flow theory. Corresponding to the limit of e + 00 e the "Stokes theorytt  for very 

low Reynolds numbers is known to be involved in an unbound fluid at sufficient dis- 

tances from the body. In the other limit of c + 0 , the analogy to the Knudsen layer 

is the boundary layer near the body in conventional gasdynamics. The boundary layer 

thickness goes down as the viscosity is decreased. For points at fixed distances from 

the body surface, they w i l l  eventually lie in the effectively inviscid portion of the flow 

if the viscosity is small enough, To see the details in the boundary layer, the point 

in question must be made to move closer to the body surface as  the viscosity is reduced, 

in order to remain within the boundary layer; then and only then the limit for vanishing 

viscosity may be taken. If we  change the words ''boundary layer" to "Knudsen layer" 

and "viscosityt' to "mean f r ee  path", the last  three sentences describe exactly what 

should be done for analysis of the Knudsen layer as E + 0 .  
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As also disclosed by the exact solution, Eq. (IX. 2 ) , the natural independent 

variable should indeed be ? = t /C . W e  now keep i fixed and finite but let C 3 0. 

If Eq. ( IX .  2 ) is expressed in t and then integrated by parts,  the resulting 
- 

By expanding f ( O )  and df(')/dt for small e two alternative forms, both accurate 

to o (I for finite Z ,  are 

f " =  f ( O )  e + - t  

IIV c t \  t l A . 0  ) 
= 0  - 

The second form is clearly preferable since it remains valid as 

smoothly into the "outer expansion" Eq. ( IX.  4 )  and taking on the prescribed boundary 

value at t = 0 .  

t 00, merging 

of the 

Knudsen layer, in the sense that beyond which, to 0 ( e ) ,  Eqs. ( IX. 5 * ) and ( IX. 4 )  

agree with each other. The condition is therefore 

tK It is now possible to estimate more accurately the "thickness 

- 
e- tK-O ( r 2 )  

i.e., - 
tK-  0 ( I n s )  

o r  t - 0 ( t In f ). In fact, no matter to what finite order of 

asymptotic solution Eq. (IX. 4 ) ,  the same argument will show that t is always 

0 ( E In c ). The Knudsen layer remains to be treated separately. 

is expanded the K 

K 

Returning to the central problem of formulating an approximate solution for the 

Boltzmann equation, we suggest that the distribution function should exhibit much the 

same basic features as the solution Eq. ( IX. 2 ) of the simplified model. In a moment 

equation approach, for instance, a reasonable choice of the trial function might 

resemble Eq. ( IX. 5 ) a If w e  assume an average collision frequency 0 a s  in the 

BGK model, a convenient form is 

- 

where n f 

satisfying the moment equations. Since we work with only the average properties 

is  chosen to contain the adjustable parameters to be controlled by 
0 0  

8 i' -7 
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p , Ui , Pij I qi in the moment equations, there is considerable leeway in the choice 

of n f the main restriction being that it must reproduce the Navier -Stokes and 

Fourier laws  in the limit of 0 3 a3 e 

the nv f 

their ' lorigin' 'e 

now necessary. 

o 0 ,  c 

The free -molecule behavior is guaranteed by 

term, which automatically divides the molecules into groups depending on 

No further assumption such as the Lees "line of sight' ' principle is 

It may be noted that the term analogous to the last  one in Eq, ( IX. 5 ) is omitted 

in Eq. (IX 6 ) for brevity. The effect presumably is comparable to the net difference 

from alternative choices of n f It is to be emphasized, however, that Eq. ( IX.  6 )  

is not meant to be so  assessed. 

approximation itself is adjusted to satisfy the moment functions of the exact Boltzmann 

equation, and any molecular model may be adopted for evaluating the collision integrals. 

0 o '  
Only the form is suggested by the BGK model. The 

A source of difficulty in the use of Eq. (IX. 6 ) is the concept of an average 
- 

collision frequency 0. 

the choice of 0 appears to be either p b  

ambiguity, any choice of a single average 0 of course over -estimates the mean 

free path of the fast - moving molecules, as shown by the smaller numerical factor 

2/3 needed for matching the heat transfer by means of the BGK model, 

Eq. (IX. 6 ) 

a way of grouping the free - molecule - like and Navier -Stokes -like molecules. 

there is no strong reason not to allow 0 to vary somewhat with the speed of p , 
thereby compensating for this source of e r ror .  The refinement, however, may or  

may not be worthwhile, because, again, the net difference might be comparable to 

that from the alternative choices of n f 

mation Eq. (IX. 6 )  is, 

a smooth transition between the free -molecule and the Navier - Stokes limits. The 

resulting macroscopic equations a re  already rather cumbersome to attack, and have 

been solved only for the simple cases of the linearized plane and cylindrical Couette 

flows (Shen ( 1963 ) ) .  

A s  in the discussion of the BGK model following Eq. ( VI11 . 3 ) , 
or ( 2 / 3 )  ( p / p ) .  Besides this 

- 

- 

In assuming 

on the other hand, we have effectively used the BGK model to suggest 

Thus 

In other words, the nature of the approxi- 0 0 '  
as a first step and like the BGK model, only to guarantee 

It seems yet premature to introduce further complications. 

TO conclude this brief survey of the current status of rarefied gasdynamics, we 

reiterate that our emphasis has been on the treatment of flow problems in terms of 
8 7 8  
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the observables such as  mean velocity, pressure, temperature, shear stress and 

heat flux. 

Navier -Stokes and Fourier relations in the hydrodynamic equations of motion, 

applicable throughout the entire range of Knudsen numbers. I t  might be said that to 

various degrees of approximation methods a re  indeed slowly emerging. 

the geometry of the problem will always enter into resulting equations, so in effect 

special attention is required for each class of problems defined by its geometry. 

These equations furthermore a re  much more complicated than the Navier - Stokes, 

and our experiences a re  still confined to the simplest possible examples. The shock 

wave structure, because of its independence from solid boundaries, has been one of 

the ideal testing grounds for workers in this rapidly advancing field, 

The aim is thus essentially to look for the replacement of the conventional 

Unfortunately 
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Basic Fluid Dynamics 1 

I. Introduction 

In attempting to survey basic fluid dynamics in a program dedicated to the 

field of applied mathematics in space problems, the foremost question is to settle 

upon what should be meant by the word "basic". To this end, Professor Goldstein's 
admirable monograph ( S .  Goldstein, "Lectures in Fluid Dynamics", Interscience 

Publishers, 1960 ) has provided a valuable guiding principle. Our endeavor in the 

following, however, is slightly different from an abbreviated version of Goldstein's 

book, but reflects somewhat the aerodynamicist's viewpoint. A f t e r  the formulation 
of the general equations of motion, the emphasis is mostly on the motivation and 

derivation of the different approximations which find applications in various practical 

problems, particularly to bodies in flight at the higher speed ranges typical of space 

activities. Much material of basic and mathematical interest is unavoidably left out, 
as are the full details of the solution of any specific problem. In their places, we 

choose rather to illustrate, ever so briefly to be sure ,  how the theory has been ex- 

ploited in the explanation and prediction of complicated physical phenomena. 

Since most of the coverage is "basic", therefore contained in the well-known 

treatises such as those of Lamb and Milne-Thomson, as well as Goldstein's book 

mentioned above, we have refrained from giving references except in rare instances. 

II. Description of Fluid Motion 

The fluid medium we work with shall be a continuum which, although somewhat 

idealized, should approximate the real gas of interest, namely a i r ,  in its behavior. 

Fluid dynamics then deals with such a gas in motion with o r  without the presence of 

solid boundaries. The state of gas in equilibrium, as when enclosed in a stationary 

and insulated vessel, is described by two thermodynamic variables, say density p 
and temperature T ; and any other thermodynamic variable can be expressed in 

te rms  of p and T 

gas, observable as the normal force per unit a rea  acting on the wall. 

may be written as 

In particular, we often desire to know the pressure p of the 
The relation 

P = P ( p 7 T )  (II.1) 
and usually referred to as the "equation of state". Under the assumption of a perfect 

gas , Eq. ( II 1 ) becomes explicitly 
p = p R T  ( I I . 2 )  

where R is the gas constant, depending only upon the molecular weight of the gas. 
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When a body of gas is in arbitrary motion, it becomes necessary to regard the 

body of gas as composed of a large number of fluid elements, which must be small 

enough to represent the details of the fluid motion, yet not so small as to exhibit the 

coarse nature of the molecular motion. A velocity 3 may be assigned to each fluid 

element, and an observer riding with the fluid element may now determine the density 

and temperature of the gas in the fluid element. The pressure p follows again from 

Eq. (11.1) . If we trace the changes of p , p T , V with time for each fluid element, 
the result is the "Lagrangian description" of the fluid motion. Alternatively, it is 
often more convenient for analysis to use a field representation by examining the flow 

pattern, i. e. , the functions 

where T? designates the location of the fluid element at the given time t . This is 
now the "Eulerian description" of the fluid motion. 

4 

--* 
P (2 ,  t )  9 p (3, t )  Y T (E t )  Y V ( 3 ,  t )  

In the Eulerian description, the rate of change of any property Q of a given 
fluid element is usually written as DQ /Dt . Hence if  Q is expressible as 
Q (?, t )  , we have 

DQ = lim [ Q (?+A?, t + A t )  - Q (3, t )  1 / A t  
Dt At-+O 

= lim 
at+O 

[ Q (?+?At,  t + A t )  - Q (t, t )  ] / A t  

(11.3) 

For example for  given 3 ( 3, t ) , the acceleration of the fluid element is equal to 

D? / Dt . However, sometimes Q may not be given as a field, then a direct evalua- 

tion is necessary. To illustrate the latter, let Q be the volume bZ of a fluid element, 

and define the "dilatation11 8 as the rate of volume change of the fluid element, per  

unit volume: 

(11.4) 1 D  
lim E (E k>. e E 

Br '0 

1 
I I 

If bT is bounded by surface S and h is the 

outward unit normal on the surface element 

dS , clearly by definition 

8 E lim ( 3. i?dS/6T . - -  - 
ar+o J s  

= div? . (11.5) 
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Of considerable interest in the Eulerian description of fluid motion is the 

"streamline pattern", showing the direction of motion of each fluid element at a 
given instant. The "streamlines" a re  defined by 

-3 d x v  = 0 ,  
S 

where d7! 
with time, the fluid motion is said to be a "steady flow". 

cases coincide with the trajectories of the fluid elements. 

is a length element on the streamline. If the flow pattern does not vary 
S 

The streamlines in such 

Aside from the translational motion of the fluid element, we must, of course, 

also expect in general a rotational motion as well as a change of shape with time. 

The angular velocity of the fluid element turns out to be one half the "vorticity" 3 , 
which is defined through a given velocity field 3 (3, t )  as 

+ 
, ' = v x v .  ( I I . 7 )  

Following Eq. (11 . 6 )  , we may then look at the vorticity pattern by introducing 

1 
I 
I "vortex lines" analogous to the streamlines, 

d? X C ? =  0 
V 

where di'v is a length element on the vortex line. 

(11.8) 

III. Equations of Fluid Motion 

The equations of fluid motion express the requirements that the fundamental 
laws  of the conservation of mass,  momentum and energy must not be violated. These 

can be very simply stated if the Lagrangian description is adopted. Consider a small 

fluid element of volume QT ; its mass will be pbr . For generality we introduce a 

"mass source" &I such that mass is being added to the fluid element at the rate of 

mbz . Then the law of conservation of mass as applied to k states that 

( I I I . l )  

In Lagrangian sense, the left hand side is an ordinary time derivative of a product, 
and we may write 

By using the definition of the dilitation 8 , Eq. (11 .4 ) , to evaluate 

result may be rewritten as 

6% , the 

(111. 2) 
+ 

which is known as the "equation of continuity". When p , V and h are regarded as 

8 8 5  
t 
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field quantities in Eulerian description, we only need to interpret the terms in Eq. 

(111.2) accordingtoEqs. (11.3) and ( 1 1 . 5 ) .  

For the momentum p7b.T and energy p E 67 ( E being defined as the energy 

per unit mass of the fluid) , equations similar to Eq. (I11 a 1) may be written with a 
"momentum source" P and an "energy source" E , respectively, on the right 
hand side. 

+ 

The same manipulation yields 

and 
DE P E  = E - m E  

( I11 . 3  ) 

( I I I . 4 )  

Again, although derived from the Lagrangian description, Eqs. ( 111 . 3  ) and ( III .4 ) 
offer no difficulty in interpretation for the Eulerian description, provided m , d 
and E are given as field quantities. 

further with the terms 3 and E ,  it will be assumed that these are only due to the 

interactions between adjacent fluid elements, and that the basic fluid properties are 
isotropic, namely, invariant with orientation. For 3, aside from the pressure p 

experience shows that any non-uniformity of motion causing a change of shape of the 

fluid element would be resisted by the fluid through the development of internal 

stresses between fluid elements. For E ,  experience shows that heat will flow 

through the boundary of the fluid element if a non-uniformity of temperature exists. 

In addition, the stresses acting on the boundary perform mechanical work on the fluid 

element a 

Consider now a fluid element 8% within the surface S . On a surface element 
dS, let if be the unit outward normal and i? the resultant stress vector. Referring 

to a set of Cartesian coordinates x i ,  i = 1 , 2 , 3  , these have components ni and Fi , 
resp. It is then convenient to introduce a s t ress  tensor 7.. such that 

We restrict ourselves in the following to the case of m = 0 * To proceed 

11 
F. = T..n 

1~ j 1 
( 111.5 ) 

In Eq. (I11 . 5  ) and hereafter, the customary convention of summing over an identical 
subscript will be understood. Since z .. 

11 
includes the pressure which is present 

even without fluid motion, we may separate 

'ij into two parts: 

8 3 3  

i? 
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7.. = r.! - ps i j  
11 11 

11 11 ( 6 . . =  0 ,  i + j ;  c d . . =  1 ,  i = j )  7 

the negative sign indicating that the pressure is always opposite to 8. The tensor 

T .! is the "viscous part" of T.. , and remains to be related to the non-uniformity 

of the fluid motion. 

the first derivatives of 3 with respect to the space variables at the point under 

consideration, hence the tensor hi / dx . Splitting bui / ax. into symmetrical and 

anti-symmetrical parts,  we have 

11 1J 

If the non-uniformity of the fluid motion is slight, it may be characterized by 

j J 

au. 
1 = e.. + 0.. dXj 1J 1J 

1 bu. bu. 
e..  =-(L+-J-) 
1J 2 aXj a X i  

( I I I . 7 )  

- L ( i -  aU au. 
a i j  - 2 a ~ .  $)  9 

w . .  11 = -2EijkWk (rn.8) 

J 
The anti-symmetrical par t  w . .  is easily seen to be 

11 

where o 

the alternating symbol , 
is the component of the vorticity w' defined by Eq. (11.7 ) and E ijk is 

E = o  when the subscripts a r e  not all different; 

k 

ijk 
= 1  when i , j , k follow the cyclic order 1 ,  2 , 3 ; 

= - 1  when i , j , k do not follow the cyclic order 1 ,  2 , 3 . 
Thus w . . represents the nonuniformity due to a rigid rotation of the fluid. The 

11 
change of shape of the fluid element as it moves along is entirely represented by 
the symmetrical tensor e.. . To proceed further, the "viscous hypothesis" is 
made that P.'. should be linearly proportional to e.. , i. e. , 

11 11 

11 

2.'. 11 = CijktekC, 

CijkC being constants. Now the physical law must not be affected by the orientation 

in an isotropic fluid. Then there must be * 1 , x2 ' x3 of- x 

C.. ijkt = A Sij SkC +p ( 5, tij4 + bjk bit ) 

reducing to two constants h and ,u . Hence 

* See, E. g. , Jeffrey: "Cartesian Tensor", p. 70, Cambridge P res s ,  1931. 

837 
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( I11 0 9 ) 

where obviously ekk = V. V 
There are then normal viscous s t resses  7 11, ' T i 2  , ~~b Summing the 

three, we have 

Thus, like pressure p , the average of the normal viscous stresses is independent 

of the axes. It is however proportional to the dilitation, and the coefficient 3 1  + 2p 
is referred to as the "bulk viscosity coefficient". 

theory shows that 

For monatomic gases, kinetic 

2 3 3 ( + 2 , u = 0  o r  A=-s,,u . 
This result is generally assumed in most applications involving air (even though it is 

composed of primarily diatomic gases) so that the viscous stresses are all propor- 

tional to a single material constant, the "viscosity coefficient". 

becomes 

Eq. ( I11 e 9 ) 

z i; 2 
- s/u bij ekk + 2,u e.. 1J (111.9) ' 

known as the "Navier - Stokes relation". It may be noted here that the viscosity 

coefficient is mainly a function of the temperature T . 
W e  next turn to the heat flux due to the non-uniformity of the temperature field. 

Since T is a scalar, the non-uniformity is characterized by a vector V T  
is the heat flux vector ( the  rate of heat flow per unit a r ea ) ,  the assumption of linear 

dependence leads in an analogous manner to 

If $ 

( I11 * 10 ) s, q = - k v T  
where the proportionality constant k is the "coefficient of thermal conductivity". 

Eq. (I11 . 10 ) is known as the "Fourier law". 
and k owe their origin to the random motion of the molecules, and these two are 
closely related. 

From a molecular viewpoint, both,u 

For example, for monatomic gases, kinetic theory predicts 

qr cv = 5/2 
where Cv is the specific heat at constant volume. 

With Eqs. ( 111 . 9 )  and (111 1 0 )  , it is now possible to represent i? and E 
explicitly. For P , there is 

+ 
r 

PibT = 

T.. n. dS - 
- is 1J J 

' t . . d r  , by Gauss' theorem; or ,  as b2-t o , - a 
j 

- 167 ax 1J 

I 
I 
1 
1 
1 
I 
1 
I 
I 
1 
1 
I 
I 
1 
I 
1 
I 
1 
I 8 d 8  
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(III. 11)  

For E ,  there is 

+ 
where ui is the component of V in xi - direction. A s  6.r ---f 0 ,  it follows 

e a a aT 
E = - ( T..u.)  + - ( k - )  

J J J 
ax. 11 1 ax. ax. (111. 12)  

Hence, with Eq. ( 111 . 11 ) the momentum equation, Eq. ( 111 . 3  ), becomes finally 

( I I I .13 )  

*In the energy equation, Eq. ( 111 . 4  ), we note that for the fluid element in motion, 

E = U + l g  2 
where U is the internal energy of the fluid element. Together with Eq. ( III . 1 2 ) ,  

Eq. ( III . 4  ) after simple manipulation becomes finally 

DU - -pe . .  + z.'.e.. + - a (k-)-  a 
JJ 1J 1J aX bx. 

j I 
P D T  - ( 111 .14  ) 

The second term of the right hand side clearly represents the work done by the 

viscous s t resses ,  and often is defined as the "dissipation function" ip . It may be 

easily verified that CP 5 0 when T.'. is given by Eq. (111 . 9 )  . 
11 

Alternative forms of the energy equation, Eq. (111 . 14  ), are sometimes useful. 

For instance, in terms of the entropy S 

1 
P 

since by thermodynamic definition 

TdS = dU + pd(-) 

the continuity equation, Eq. ( 111 . 2  ) (with m = 0 ) , and Eq. ( 111 . 14 ) combined 

leads to 
a m  

I J 
DS - ip + -(k-). PT- - ax. ax. 

In te rms  of the enthalpy h , since by thermodynamic definition 

Eq. (111 . 14)  may also be replaced by 

i 

( I11 . 14 ) ' 
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(111 14)" 

IV. Physical Boundary Conditions of Fluid Motion 

The fluid motion has been defined in the above through the unknowns p,  T -+ P9 
and V, which are required to satisfy Eqs a (II. 2) , (III. 2) (with m = 0) (III. 13) and 

(III. 14). A typical problem is to find the solution when an obstacle moves through 
the fluid in a prescribed manner. In the fluid domain, there remains the question 

of relating the values of these unknowns for the fluid elements in contact with the 

obstacle, with the prescribed motion and properties of the obstacle itself 
think of Eqs . (II e 2) and (III. 2) as defining p and p in terms of V and T,  so  Eqs . 
(III. 13) and (III.14) are  really the equation to be integrated. Thus, if  the obstacle 

is impermeable and represented by the surface F (x., t) = 0 and its temperature by 

the condition T = TS(t) on FS= 0 ,  we are interested to assign values of V and T for  

the fluid elements satisfying Fs= 0 .  

Now the resultant velocity of a point on the obstacle must satisfy DFS/DT= 0 .  

Since the obstacle is assumed to be impermeable, the velocity of the fluid element 
at the same point must have the same velocity component normal to the surface, 

and therefore satisfy also DFS/Dt = 0 ,  although the tangential velocity is still 

arbitrary. We refer to this as the "condition of no penetration" , or  

We may 
3 

s 1  + 

DFS - = 0 for fluid elements on FS= 0.  
Dt 

(IV. 1) 

Obviously by the same reasoning, Eq. (IV. 1) is also the condition at the interface 

between two dissimilar fluids. 

A s  for the tangential component of the fluid velocity and the temperature of the 

fluid element at the boundary, one usually appeals to experience whenever the mathe- 

matical solution requires these data. Ordinarily it is assumed that the fluid element 

shall have neither a relative velocity with respect to the boundary -- the "condition 

of no slipff ,  nor any temperature differences from that of the boundary -- the "con- 
dition of no jump" 

considerations, so long as the gas is not too rarified. 
These are confirmed as first approximations by kinetic theory 
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The precise conditions under which the mathematical problem will be "properly 

set" is in general a difficult question because of the complicated non-linear nature 

of the equations. The practice is rather to look for a solution when physically the 

problem is wel l  -defined and can be set up in an experimental investigation. 

it should be noted that empirically under seemingly identical conditions the observed 

flow may be either t81aminarf1 or  @1turbulenl?8. Take the steady flow through a circular 

pipe as an example: A mathematical solution of the equations predicts that the flow should 

move in layers, and is indeed well confirmed experimentally but only if the flow 

velocity is relatively small, A t  higher velocities, the actual f low is composed of a 

steady mean motion superposed by random time - dependent fluctuations. This pheno- 

menon is typical rather than exceptional. It strongly suggests that the general unique- 

ness c~ndition for the -stern " J  gf eq~aticns describing f h i d  flow W O U ! ~  be extremely 

difficult to lay down, 

However, 

V. Rotational and Irrotational Motions 

We defined in Eq, ( I1 7 ) .  the vorticity vector 2 
4 

3 =  v x v  

representing the rigid body rotation of the fluid element. 

motion may be classified a s  rotational o r  irrotational depending on whether 3 # 0 

in general o r  2 = 0 everywhere in the fluid. 

curl  of V , it is a solenoidal vector, i. e. , 0 - 2 = 0. 

field with m = 0 , the equation of continuity, Eq. (111.2 ) , reduces to 0 - p V = 0 .  

Thus by analogy it can be said that G' also satisfies an "equation of continuity'. 

a contour C enclosing a surface S be drawn in the fluid. 

Vortex lines can be passed through points of C to form a 

"vortex tube", and the following must hold: 

Kinematically, the fluid 

W e  note first that because G' is the 
4 

Now if we have a steady flow 
. I  4 

Let 

C Is uidSi  = i, wi dSi 

where S' is the area enclosed by C' anywhere downstream along the vortex lines 

from C .  In particular, by taking S + 0 , the vortex tube becomes a very thin 
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"vortex element". Thus a vortex element can never end within the fluid. It may, 
however, form a closed loop. 

If the fluid motion is an irrotational motion, by applying Stokes' theorem to the 

Consequently a "velocity potential" 6 exists such that 

T=vpl * 

Since a scalar 

find the solution for a single function 6 and becomes much simplified. It is there- 

fore of interest to examine the circumstances under which the irrotational approxi- 

mation may be adopted. 

defines the velocity vector, the mathematical problem is then to 

With ri? = 0 , consider the momentum equation, Eq. ( 111.3 ) , 

Expanding DT/Dt ,  we have 

Hence, by straightforward manipulation and with Eq. ( I11 , 2 )  , 

The "vorticity equation'' follows immediately 

* D  --p * 1 1- 
- ( K )  = ( = . v ) T + - v X ( - P ) .  
Dt P P P P 

We shal.1 examine the behavior of 3 under the following simplifying conditions: 

1) p = p ( p )  , e. g. , p a  p' for isentropic process ( 

2 )  -+ 1 

being the ratio of 

specific hea ts ) ,  or  p = const. for incompressible fluid; 

= 0 ,  the inviscid approximation. Under the simplification, Eq. (111 . 11) 

gives P = - V p ,  andsince V x ( - V p )  = V x ( V j p )  = 0 ,  Eq. ( V . 2 )  becomes 
P P 

-4L D-,  = (Z.  V)? 
Dt P P 

o r  

w 
= j. [ e . .  + w . . ]  . p 1J 1J 
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Noting Eq. (In. 8 ) , 
&.G).. = - 2 6 . .  w.w = 0 . 

J 1J 1Jk J k 

W e  finally get 

D W -  -1 = e.. 
Dt P P 

11 

which is sometines interpreted a s  saying that following the fluid element, 

changes due to the "stretching' of the vortices. In particular, for two - 
ui/p 

dimensional motion Z?= ( 0 ,  0 ,  w ) but e = 0 , Eq. ( V ;  3 ) degenerates into 
3 33 

saying that the vorticity, strictly speaking w / 
without change. 

limit, if at some time the fluid element does not possess vorticity it will not acquire 

vorticity in two - dimensional motion. When the flow field is set up from rest  through 

the arbitrary movements of a two -dimensional body, we therefore expect irrotational 

motion at all times. 

can be reached by integrating Eq. ( V .  3 )  for a given fluid element. ' These are of 

course only useful in practical cases when the underlying assumptions a re  acceptable. 

is attached to the fluid element 

Following Eq. ( V . 4 ) , as long a s  p = p (p  ) 
3 p y  

in the inviscid , 

For the general three -dimensional flow, the same conclusion 

Let us now examine the role of viscosity. Consider for simplicity the small 
+ + v  

PO perturbation from a state of rest, i. e. , V = V , Z' = ZP , p = po + p '  , etc. , 

being the density of the fluid at rest and primed quantities being the small perturba- 

tions. A f t e r  neglecting the quadratic terms involving the perturbation quantities and 

with the help of Eqs. (111.11) and ( 111.9 )', Eq. ( V .  2 ) is reduced to 

equation 

where vo = p o / p o  If a vortex element is 

an infinite fluid at t = 0 and maintained afterwards, the consequence 

the kinematic viscosity. 

the diffusion 

generated in 

ofEq.  ( V . 5 )  

is that the vorticity will spread out, with decreasing strength, to occupy a region of 

size ( J  t )  1'2 beyond which the effect is essentially nil. This result is qualitatively 0 
* 

See e. g. , L. M. Milne-Thomson: Theoretical Hydrodynamics, 4th ed. , 
Macmillan ( 1 9 6 0 ) ,  p. 84. 
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T x2 

useful in visualizing the flow patterns surrounding 

a body moving in a fluid at rest. Suppose a 

thin two-dimensional plate of length L 
V 

moves parallel to itself in a viscous fluid 

at constant velocity V, An obvious irro- X 1 
tational solution is that the fluid is undis- 

turbed, satisfying all differential equations except for the viscous vlno-slip" and 

"no-jump" conditions at the surface. 

but suddenly turned on at  t = 0 ,  

be instantaneously arrested, creating a surface of discontinuity which may be inter- 

preted as  a vortex sheet composed of concentrated vortex elements. 

W e  imagine viscosity to be absent for  t < 0 ,  

The fluid elements in contact with the plate wil l  

The vorticity 

subsequently spreads out approximately at a rate 0 ( J p  / t  ) . 
fixed relative to the plate, the instantaneous flow pattern wi l l  be swept downstream 

at a speed equal to V and the vorticity will be seen as essentially confined in a 

region roughly parabolic starting from the leading edge of the plate, at the end of 

the plate the thickness 6 reaching a value 0 ( A v -  ) , In non-dimensional 

form, w e  have therefore 

To an observer 
0 

L 

where Re  = V L /z, the "Reynolds number" based on the length L . There 

would be furthermore a disturbed region ahead of the plate of s ize  
0 '  

given by 

8 -  O ( V )  

o r ,  again in terms of a Reynolds number, V 8t /u0 - 0 ( 1 ) . Thus the 

size of the region of rotational flow because of the viscous effects is confined to 

the immediate neighborhood of the plate as Y + 0 .  In fact, the thickness 61 
0 

tends to zero much faster than the thickness b . 
the body is referred to as the "boundary layer". 

region swept behind the body is the Ilwakell. 

and the wake, the flow is seen to be essentially irrotational. 

these qualitative descriptions remain valid, but although the boundary layer thick- 

ness is still proportional to 6 , the wake will  be of the order of the body 

Rebl 

The layer of 0 ( b )  adjacent to 

The viscous and rotational 

Outside of the thin boundary layer 

For blunt bodies 

8 9  4 
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thickness. It should be mentioned that rotationality may also be present due to 

curved shock waves which form ahead of the 

body when it moves at high speeds. 

This is an example where p = p (p  ) is not 

true. 

( See 5 X ). 

Finally we note that the boundary layer and the wake are actually the corrections 

to an inviscid solution due to the viscous boundary conditions. Consequently outside of 

these regions whether the flow be rotational o r  irrotational, the fluid may be regarded 

a s  inviscid. A s  the kinematic viscosity of gases is usually very small, in most flow 

problems the Reynolds number will be large and the boundary layer will be relatively 

thin. 

crror as if  the bc*;n,dary Izyer were absei~t. The difficulty of the * a b o - m  So-mbai-y of 

the wake, however, cannot be circumvented in constructing an inviscid approximation 

for blunt bodies. 

Then the inviscid "no penetration" condition may be applied without serious 

VI, The Inviscid Approximation 

Let us now exploit the inviscid approximation. Since the viscosity p and the 

thermal conductivity k a re  of the same mechanism, the fluid should also be regarded 

as non heat - conducting in the same approximation. 

from Eq. ( 111. 14 ) is 

The immediate consequence 

= o  DS 
Dt  
- ('VI. 1) 

i. e. , the entropy is constant following each fluid element, though not necessarily 

throughout the flow field. 

generate into the "Euler equations" 

The "Navier -Stokes' equations", ( Eq. 111. 13 ) , de- 

= - v p .  DV 
P D t  

The continuity equation, Eq. (111 .2 ) , of course is unaffected: 

-+ 

Dt 

(VI.  2) 

(VI.  3) 

Consider again a small perturbation of the fluid from rest at pressure p and 0 
--*( 

density po . Neglecting quadratic terms of the perturbation quantities V , p and 
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, w e  get the "acoustic theory" from Eqs. (VI. 1 - 3 ) : 
S = S const. 

0 '  
a 3  p o x  = -VP1  

The first of these may alternatively be expressed as 

, Y =  c /cv 2 
P I P ,  = ( P I P o )  P 

f 

14 

(VI. 4) 

(VI .  5) or 2 

where a = d m  = J'po/po , the "speed of soundll. Eliminating p 1  and 

V 

p1 = a p1 

A t  
in favor of p '  , we find 

p' = 0 
a2 2 2  p' - a  0 ( VI. 6) 

which is the "wave equation". 

turbance at a point at t = 0 is such that the disturbance spreads out in space at a 

rate equal to the sound speed 

For a source of disturbance moving at constant velocity V , to an observer fixed to 

the source of disturbance,two different flow patterns result depending on the "Mach 

number" M 3 V / a For M < 1 the disturbance spreads out in all directions, 

The elementary solution for introducing a small dis- 

, and beyond a radius of at the fluid is undisturbed. 
3 

the entire space in a long enough time. For M > 1, the dis- 

formed by the envelope to the drifting spheres, with the 
-1 1 

eventually swallowing up 

turbed region is conical, 

/ 

M < 1  M 7 1  

vertex at the source of disturbance, the semi -angle being equal to the "Mach angle" 1 
I 

-1 1 sin - The conical surface itself for finite time, in conjunction with the spherical M '  
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surface in the back, is the wave front separating the undisturbed and the disturbed 

regions. Following von K g r m h ,  one may refer to the undisturbed region ahead of 

the conical surface a s  the "zone of silence" , and the disturbed region behind a s  the 

"zone of action". 

the difference in behavior of subsonic and supersonic flows remains qualitatively the 

same even if the disturbances caused by the moving object are no 'longer small. 

While the above is based upon linearized small perturbation theory, 

Without restricting ourselves to small disturbances, w e  return to Eqs. (VI. 1 ) 

to (VI.  3 ). In certain cases,  a first integral of the Euler equations, Eq. (VI. 2 ), 

can be directly obtained, and a s  a result further simplify the problem of finding a 

solution. By Eq. ( V .  1) , Eq. (VI.  2 )  may be written as 

av 1 -2 * j 1 - + - 0 v  - v x w  = - - v p  . at 2 P 
I 

1 
Now the definition of entropy S is, for a given element, TdS = dh - - dp. But 

inasmuch as T and p are  always expressible as functions of p and h ,  this 

expression may also be regarded a s  an ordinary differential relation defining 

S ( p  , h )  , hence leading to 

P 

1 
T V S  = Vh - - V p  . P 

We define next a "stagnation enthalpy' H , 
1-2 
2 

H G h h + - V  

and recast  Eq. (VI. 2 ) into 

b - ,  + 
-V + O H  - T V S  = V x z ) .  at (VI.  7 )  

3 -  For the special case of steady flow, - V = 0, Eq. ( V I .  7 ) is known as  "Crocco's at 
theorem" , showing for instance that vorticity would arise due to entropy gradient. 

If Eq. (VI.  7 ) is dotted into the length element d l  

along a streamline, at given t , and then integrated 

between the end points A and B , the result is 
B B 

4 

7 -  d? A 
a +/: dH - )A TdS = 0. 

This yields the so -called "Bernoulli's equation'' in the following cases: 
+P + -* - -  a -  

at Dt a )  For steady flow ( - = 0 )  , DS - V - BS = 0 , hence V and dC 
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a re  both normal to VS Consequently 

H = const. along any streamline (VI.  8 )  

b ) For irrotational flow with uniform entropy everywhere ( "homentropic 1' ) . 
V = V $  and VS = 0 ,  hence 
- 

+ H = const. along any streamline. (VI.  9) 
a t  

When the streamlines can always be traced to a region of steady uniform flow, the 

constant in the right-hand side of Eq. (VI.  8 ) or  (VI.  9 ) becomes identical for all 

points in the f l o w  field. 

We next proceed to derive the equation for the velocity potential $ in an 
+ 

The scalar product of V with Eq. ( IV.  2 )  leads to irrotational homentropic flow. 

1 - 5  2 a2 --P -- a v2 + - ( V . V ) V  = - g V ' V p  
at 2 2 

by Eq. (VI.  3 ) .  But differentiation of Eq. (VI.  9 ) gives 

" * + - - + $ = o .  2 a v2 a2+ 
P at a t 2  

Eliminating between the two expressions, we get 
at - n 

b 2 aZqi 2 + - vL - v  + 7 - a V e V + V . V - = 0 .  at a t  2 

In Cartesian coordinates, Eq. ( V I .  1 0 )  may be written as 
2 2  2 2  2 2  

dtt - ( a  - 8x) 8, - ( a  - d y )  dyy - ( a  - 8,) P I z z  

+ 2(8x$ydxy+ qixdzdxz+ 8y8zdyz 

+ plXplXt + dyPIyt + gz dzt) = 0. 

Here a2 is expressible also in 8 by noting that 

v2 a v2 L P  + - - - - + - 
Y-lp 2 I(-1 2 

H =  

(VI .  1 0 )  

(VI .  1 0 ) '  

(VI.  11) 

while Eq. (VI.  9 ) shows that H is directly related to ad /b t  . It is, however, more 1 
1 

2 instructive without explicitly evaluating a . To fix ideas, suppose we have a body of 

characteristic length L , characteristic velocity V in an unsteady motion of 
a) 
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characteristic time t . We assume that generally a - 0 ( a 

characteristic sound speed. Then in Eq. (VI .  10 ) appear the dimensionless para- 

) , am being the a, 03 

meters 

and 

Mach no. M E V / a  
00 a > *  

Strouhalno. x L/V t . If x - O ( l ) ,  a s  M2 - 0  the 
0303 03 

equation reduces to the Laplace equation 
2 v # = O .  (VI. 12) 

Eq. (VI.  12 ) constitutes the (inviscid) "incompressible approximation" since the 

equation can also be directly obtained by setting 9 /Dt  = 0 in the equation of 

continuity and then using V = V# . 
the prescribed normal derivative of 4 on the body surface ( to  satisfy the condition 

of !!no penetration" j . 
integral of the momentum equation, determines the pressure field which simultaneously 

must co-exist. We  shall not discuss the various techniques of solving Laplace's 

+ 
The velocity potential now may be solved from 

A f t e r  6 is obtained, the Sermul!i.fs eqwtien, bei11g an 

equation. 

VII. Small Perturbation Theory for the Steady Flow over Thin Bodies 
2 

To illustrate the behavior of the solution of A Y 

Eq. ( VI. 10 ) 1 when the incompressible approximation 
v m  is not applicable, consider a uniform stream of 

velocity V in the x -direction flowing over a fixed - -& X 

+ 

00 
A thin body lying close to the x , y -plane. 

ciently thin bodies, the uniform stream will only be slightly disturbed, and we put 

the resultant velocity potential as  the superposition of that for the uniform stream 

and a small perturbation, i. e. 

For suffi- 

Eq. (VI. 11 ) further for steady case becomes 

2 - v  ) .  
2 2 f-1 a - a  = -  

00 2 (VII. 1) 

A f t e r  substitution of the above into Eq. (VI . 10 ) 1 and retaining only linear terms in 

8 9 9  
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6 '  , weget 
n 

18 

(V11.2) 

2 
provided I 1 - M  I N 0 ( 1 ) . By a simple stretching of the coordinates 

03 
x' = x / J j c i m ,  y' = y ,  z' = z ,  

00 

Eq. (VII. 2 )  reduces to 

2 $&, + d;lyl + $;lzl = o ,  
2 <  the I l + l r  corresponds to M > 1. Thus the subsonic flows all satisfy Laplace's 

equation while the supersonic flows satisfy the wave equation. 

the transformed boundary conditions in the new coordinates, it follows readily that 

flows over a class of bodies at different Mach numbers can be related to each other. 

The interpretation of a known flow over a given body and Mach number as that for a 

different body at  a different Mach number is referred to as the "similarity rule". 

In subsonic flows, such is known as the "Prandtl - Glauert rule", in supersonic 

flows, the "Ackeret rule". 

00 - 
In fact, by examining 

The linearized theory, Eq. (VI1 . 2  ) , fails when some of the neglected terms 

become comparable with those retained. If we evaluate the neglected terms, it may 

be verified that the above linearization implies 

( i i )  a - a  >> $; , 8' . 
00 z 

2 ,  

00 03' 03 

The condition ( i)  breaks down where a2 "= V2 

flows". The condition ( i i )  breaks down when a <L V o r  M >7 1,  i. e. , in 

"hypersonic flows In both transonic and hypersonic cases, then, we are forced 

to non -linear theories even for small perturbations. 

or Ma = 1,  i. e. , in "transonic 
a, a,' 

Let us demonstrate briefly the complications of the transonic approximation. 

If V 2 a 

bations on a uniform sonic flow ( V  = a = a , s a y )  without the body. Thus putting 

it is convenient to consider the flow over a thin body as small pertur- 
a, 03' * 

0 3 0 0  
# 

$ = a  X + $ !  

and rewriting Eq. (VII. 1 ) 

9 0  iJ 



Basic Fluid Dynamics 19 

we get from Eq. ( V I .  10 ) after retaining - all quadratic terms, 

- ( $ + 1 ) $ 1 $ 1  + ) - 2 ( $ 1 $ t  + $ l $ t  ) = 0 .  
x xx Z Z  y xy z xz 

The essential features remain unchanged by restricting ourselves to two - dimen- 

sional motion in the x z -plane: 

- ( f + ~ ) $ l $ l  + a*$! - ~ $ 1 4 1  z xz = 0. 
x x x  ZZ 

Here one or  both of the quadratic terms must be everywhere of the same order as 

the term a*$' 

rapidly in the x - direction than in the z -direction. 

dominate, and the "transonic equation" for  two - dimensional steady flow finally 

reduces to \ 

. In order to do so, clearly the function must vary much more 
zz 

Hence the first term should 

- ( 1(+1) B y " +  a V z  = 0. (VII.3) 
A M  

The 

bodies of different thickness to each other was deduced by von Kirm6.n. 

similar rule" for relating the transonic flows over geometrically similar 

In analogous manner, the non - linear perturbation equation for the velocity 

potential and the similarity rule in hypersonic flow have been given by Tsien. How- 

ever, strong curved shocks inevitably occur in hypersonic flow, and the flow behind 

the shock and over the body is generally rotational. Tsienls equation therefore loses 

much of its significance. On the other hand, if we plot Eq. (VII. 1 ) , in hypersonic 

flow the sound speed a and the resultant velocity V will always be in the region 

near the maximum velocity V . 
max. 

max. OD ( f-1) M&] 
2 v = v  [ 1 +  

a 
For considerable variation of the local 

Mach number, the resultant velocity V T ! 

max. 

\ 

is essentially unchanged. In addition, V V 

the streamlines around thin bodies are  always only slightly inclined. Consequently, 

it is obvious that the perturbation velocity ut << vl , w' . Neglecting ut completely, 

the steady flow pattern in the y , z - plane at different streamwise stations x can be 

interpreted a s  the unsteady flow pattern in the y , z - plane at successive times, the 

elapsed time At between two stations &c apart being given by at !E AX /V . 
OD 

9 0  P 
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2 2  
1 24 X - ( a  - d x  1 

tr 0- 
X 0 

X 
d 0 

This is the essence of Hayes’ ”equivalence principle” 

whether the flow is rotational of irrotational, of whether any shock wave occurs at 

the nose of the body, 

thin body by reducing it to an unsteady flow over a body of lesser dimension. 

which holds regardless of 

It simplifies the problem of hypersonic steady flow over a 

= o  

VI11 . One - dimensional Unsteady Flow and the Formation of Shock 

We now return to Eq. ( V I .  10 ) but restrict  ourselves to one -dimensional 

unsteady flows, 

& -  ( a  2 2  - 4  ) d  +2P’x6xt = o c ,  (VI11 * 1) x x x  

According to the theory of quasi - linear partial differential equations, this equation 

is hyperbolic, just as in the acoustic approximation, since the discriminant 

Thus there exist real characteristic curves, along which the values of 4 and dt 
X 

may be described without uniquely determining the higher derivatives $ x x )  P’xt ’ P’tt * 

Let the running variable along such a characteristic curve be 6. For prescribed 

$ and $t along the curve, the following must hold 
X 

P’xr= 6xxxcr + P’xttcr 1 (VI11 . 2 ) 

from Eqs. (VIII. 1 ) and x x 9  P’xt and P’tt W e  normally should be able to solve 6 
(VIII , 2 ) , except when x and t are such that the matrix 

F 0- 
2 2  

26 - ( a  - d x )  0 
X 

1 

X 0 

X cr 

has rank 2 .  Hence, to require the curve be a characteristic 

or 
( VIII. 3) 

9 0  2 
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giving the direction of the characteristics. Also 

2 2  
1 - ( a  - B  ) o 

X 
= o  

t6 0 $tCr 

$X6 
X 
(T 

0 

o r  (VI11 * 4) 

giving a condition on the variation of 4 
we have two families of characteristics, which may be referred to as the C k  

curves, resp. according to the sign - in Eqs. ( VI11 . 3) and ( VI11 . 4  ). 

and It along the characteristics. Thus 
X 

By using the Bernoulli equation, Eq. (VI .  9 ) , the sound speed "a" may be 

related to 4 and dt. If initial data a r e  

prescribed along an ordinary curve (not. 

coincident with either characteristic ) in 

the x , t -plane, it is known that the charac- 

X 

L t terist ics relation Eqs. (VIII. 3 )  and (VIII. 4 )  

uniquely determine the solution in the curvilinear triangle ABD , bounded by the 

characteristics C and C - through A and B ,  resp. The segment AB is 

the "domain of dependence'' for point D .  

a segment A'BV , the solution in the shaded 

region shown in the sketch will be affected 

and is the ' I  range of influence" of the seg- 

ment A'B'. Moreover, the higher order 

derivatives normal to a characteristic may 

be discontinuous. Consequently, a characteristic , and a characteristic only, 

can serve as the boundary between regions of constant state and variable flow, 

provided Eq. (VIII. 1 ) holds everywhere. 

+ 
Likewise, if data a r e  modified along 

X 

NOW, by differentiating the Bernoulli's equation along a characteristic, 

there follows 
2a 4td + $ X d X G +  fi a u = O .  

Because of Eq. (Vm. 4 ) ,  it 'reduces to 

90 3 
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2 + - a ]  = O .  d - 
d 6  ?'x )'-1 

Thus, if we define the "Riemann invariants'' r and s as  

( VI11 . 5 ) 
1 a s = - '  - -  
2 x Y - 1  

it follows that 

r = r ( d ) ,  s = s ( p )  
where CL = const. along the C+-curves and ,5 = const. along the C - -curves. 

(The running variable 6 becomes b M along C - , ) Equiva- 

lently, since by Eq. (VIII. 3 ) 

along C+ and 
1 

x p p  = dX + a ,  xJt, = B X - a f 

we have 

7 ar ar 
- + ( a + $  ) -  = 0 a t  x ax 
as b S  - + ( - a + d x )  - = 0 .  
a t  ax 

( VI11 . 6) 

The property r is thus propagated forward without change at the local sound 

speed relative to the fluid, while the property s 

change at the local sound speed relative to the fluid. 

is propagated backward without 

It is clear that in general a region in the x , t -plane may be mapped to a 

region in the r , s -plane through one - to - one correspondence, 

a r e  degenerate cases of basic interest. If the flow is in a constant state r = r 

s = s 
0 

point in the r , s -plane. 

into a line r = r ( o r  s = s ) in the r , s -plane. The latter case represents 

motions referred to a s  "simple waves". 

However, there 

0 '  
in a given region in the r s -plane, this region will be mapped to only a 

There may also be regions in the x , t -plane which map 

0 0 

In "simple waves" since the whole region maps to the line r = r say, 

0 '  

0 '  
all the s -characteristics ( C - -characteristics ) become points along r = r 

Back in the x , t  -plane, then, along a C -characteristic s = s say, we have - 1' 

0 '  
r = r  

1' s = s  

9 0  4 
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hence 6 and !dX must t 

23 

be constants. The C -characteristics in the x , t -plane - 
therefore will be straight lines. 

Let us now consider the flow which is of constant state in a region of the 

' say, in the r , s-plane. 
0' s o )  x ' t -plane. 

The boundary between this region of constant state and the adjacent region of variable 

flow must be a characteristic, s ay  s = s Now in the r ' s -plane all the s -charac- 

. The next one s = s must be located along terist ics must start from ( r  

the line r = r since along the boundary s = s the characteristic directions 

extending into the region of variable flow a re  still completely specified by r = r 

Thus the adjacent region of variable flow must be mapped into the line segment 

s s along r = r The conclusion is: The flow adjacent to a region of constant 

state must be a "simple wave". "Simple wave'' solutions consequently are instru- 

This region is mapped to a point ( r 

0'  

0' s o )  1 

0 '  0 

0' 

0 1  0' 

mental in constructing solutions containing 

Consider as example the problem of 

moving a piston in a long tube filled with 

gas at rest. The bounding characteristic 

between the region of gas at  rest and the 

region of moving gas is now a . When 

the piston is retracting, straight C -char 
c+ 
i- 

regions of constant state. 
t i  / 

( a )  Retracting piston - 
* I  

X 

L 
acteristics can be constructed from the 

prescribed piston path, a s  in sketch ( a  ) ' 
and the flow completely determined. When 

the piston is advancing, however, the C, - 
characteristics so constructed tend to 

intersect, as in sketch ( b ) .  At the intersection w e  have different values of r and 

a given s 

X 
( b ) Advancing piston 

and the values of 9/x and 9/t can no longer be solved. 
0' 

The situation i s  further clarified by - rn -> +a 

considering a slightly different example. ( S o  1 si ; ( r o )  
I 
1 ---- 

90 5 
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Hence du/da 7 0 .  Thus if p1 v 2  as 
sketched, we conclude: ul> u and 2 

u 1 + a ( p 1 ) > u 2 + a ( p 2 )  

The time history of the density disturbance 

profile will be as  shown, with progressive 

steepening of the "compression side" of 

the disturbance (increasing density for 

the fluid element when swept by the dis- 

turbance ) , and progressive flattening of 

the "expansion side". 

seen that the simple wave solution must 

necessarily break down when the profile 

Eventually it is 

the disturbance r 

moves to the left at velocity u - a .  Let the disturbance r have a density 

distribution at t = 0 as sketched. Since 

moves to the right at velocity u + a ,  and the disturbance so 0 

0 

(1 -1vz 
a ( p )  =m cc p 

we know that da /dp > 0 .  

undisturbed regions must be a C+ - characteristic, the simple wave solution for 

the forward propagating disturbance satisfies s = 0 ,  i.e., 

Also, a s  the boundary between the disturbed and 

a 
- Y - 1  = 0. - U 

- 2 

develops a vertical slope, since any further progress would require the c res t  to 

move ahead of the foot, representing a multi - valuedness of the density which is 

obviously not acceptable. 

of the same family intersect in the earlier example. 

This corresponds to the situation when the characteristics 

What actually happens in such cases is that discontinuities in the flow variables 

a r e  developed. The boundary between the disturbed and the undisturbed regions 

becomes a "shock wave" 

pative mechanisms of the viscosity and heat conductivity of the real gas, the shock 

wave is of zero thickness across which finite changes in u and p take place. But 

the basic conservation laws  of mass, momentum and energy for the fluid flow in 

crossing the shock wave must still be obeyed. 

instead of a characteristic. Without considering the dissi- 

9 0 6  
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IX. Steady Two -dimensional Homentropic Flows 

If we specialize Eq. (VI .  10 ) to steady two -dimensional flows, the governing 

equation is 

A s  in the previous section, to classify this equation, the discriminant w i l l  be 

examined. It reads 

Thus there a re  three possibilities: 
2 

a )  a - (4' + $y ) > 0 , i.e., the flow is everywhere subsonic, then the 
X 

equation is elliptic; 

equation is hyperbolic ; 
2 2  

Y 
+ pl ) changes sign in the flow field, which consists therefore 

2 
c )  a - (pix 

of both subsonic and supersonic regions, then the equation is of the "mixed type". 

For subsonic flows, the limiting case of incompressible approximation satisfies 
2 V pl = 0 , which, being linear, can be solved conveniently for most cases. The 

difficulty of the general case Eq. ( IX. 1 ) is primarily in its non -linearity, destroying 

the possibility of building up a desired solution through superposition. So long as 

M < 1 everywhere, a straightforward procedure is to expand the solution in an 

ascending power series in, say, the free stream Mach number M 

2 

Le., 
00' 6 = p l o + M  2 4 4 . . 

m 1  

where pl obviously is the incompressible solution. The successive terms 

pl, , p12, etc. satisfy the Poisson equation 
0 

2 v 6n = Fn(plO'pll' - - "n-1) 

This is known as the Rayleigh - Janzen method. A s  expected, experience shows that 

the convergence gets worse when the local Mach number approaches unity somewhere. 

More generally, Eq. ( IX.  1 ) may be reduced to a linear problem by means of 

a "hodograph transformationtt, considering (x , y ) as functions of ( u  , v ) . The 

continuity equation, Eq. ( VI. 3 ) , may be written as 
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p v  = 0 
a u + -- 

a 
ax p b y  
- 

from which a stream function may be defined such that 

p Y = pu  9 POTx = - p v  ( I X . 2 )  
O Y  

where po is a reference constant density. Let now ( 4 ,  y )  replace (x ,  y )  as 

the dependent variables. Let also the the variables ( q  , 0 ) in polar coordinates 

for the velocity, i.e., 

u = q cos 0 

v = q s i n 0  

Y t vk 
replace ( u  , v )  as the independent variables. Then by definition the following 

complex relation holds 
Po 
P 

d$ + i - d y  = udx + vdy +- i ( -vdx + udy)  

- i0 
= q e  dz 

with z = x + iy. Hence 

Requiring now that z = z we find by equating the real and imaginary parts, 
qe Qq' 

( I X .  3 )  

p being here regarded a s  a function of q .  It is now possible to derik.3 a linear 

equation in either p /  or by elimination. For instance, in terms of )K9 ~ 

(IX. 4) 

This equation was first derived by Chaplygin in 1904 in his investigation on gas jets. 

The disadvantage here is that the boundary conditions involving a given body become 

very involved. One usually has to take a solution and then find out the exact body 

shape for which it is the solution. 

The relation p ( q )  implied above of course is given by the Bernoulli equation. 

9 0 8  
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the reference density p 
density at the "stagnation point!' where 

q = 0 .  

chosen as the 
0 '  

It is noted that Eq. ( IX.  3 ) is no 

27 

p \  

\ k o x  
I 

L 

Now in the incompressible case, Eq. ( IX.  3 ) reduces to 

Chaplygin observed that the general case w i l l  assume a similar form - if 

q - ( - )  d f 0  = -  P 
dq ps  Poq 

2 which may be integrated into q d 1 - ( ea ) , expressing the required p ( q ) . 
Indeed the Bernoulli equation yields such a form for the hypothetical gas with 

P 

if = - 1. 

expression 

Thus by approximating the time isentropic relation p cCpy by an 

- Y  p = a + b p  

90'9 
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Y A 
since Eq. ( IX.  1 ) becomes hyperbolic, 

the method of characteristics again may 

be used. The characteristic direction, 

28 

- 

&+ 

0M 

rlv -7 uv T ) / K  

dx UZ 
1 - 3  

( I X .  5 )  

aa 

the I t  + I 1  sign corresponding to the C+ -directions, resp. in the sketch. 

verified that the C, -directions make an angle 0 

It can be 

with the local velocity vector, 
- 

- M 
being the "Mach angle" , 

-1 1 
BM = sin - 

0M 

M *  

The characteristic conditions, corresponding to Eq. ( VI11 . 4 ) , may be conveniently 

expressed in p and 0 ,  0 denoting the local velocity direction, as 

2 (IX. 6) 
cot BM 

P 
dp q d0 = 0 along C+. 

The "simple wave" solution when a finite region if the x , y -plane is mapped to a 

single characteristic C, 

- 

say, in the p , 0 -  plane follows directly 

dp = p:dB//=, 

hence dp / d0 7 0 in such flows. In conjunction with the Bernoulli equation the above 

may be integrated, W e  only note that since 

* + q d q = O  
P 

the "simple wave1' equation may also be written as 

hence dq/d0 ( 0  in such.flows. Thus speed increases as pressure ( o r  density) 

decreases, and vice versa. 

The same argument in the previous section may be followed to prove that a 
4 

region of uniform supersonic flow can be extended continuously into a region of 

9 1 0  
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variable flow only through the simple wave 

solution. 

flow turning around a corner is  obtained 

by drawing successive C -  -lines from the 

corner until the velocity leaving the last 

C- - line has turned through the full angle 

As an example, the supersonic 

29 I 

h e .  Since 8 is continuously decreasing in the stream direction, pressure drops 

and speed goes up as a result. 

Meyer expansion fan. 

The transition region is known as the Prandtl- 

If the flow is along a concave wall, 0 and pressure tends to rise in the 

streamwise direction. Here  again the C- -characteristics will intersect and a 

continuous soiutioii ~ ~ C C X E C S  impcssib!e. - 
M,) 1 

Thus we must expect shock waves to 

appear in two -dimensional steady flows 

when a supersonic stream is subjected 

to a compressive disturbance ( increasing pressure in the streamwise direction ) . 

- 
' I I I I I I I I  I I  

X. Shock Conditions and Flows with Shocks 

Consider now the one - dimensional A 
--- 

c-) 
I 

1 I 'A P1 

problem of a piston moving uniformly at 

velocity U into a long tube containing 
I I  I 

A gas at rest with pressure p ~d density 
1 

. W e  postulate a shock wave separating the disturbed and undisturbed regions, P1 
advancing at  an unknown velocity U It seems clear that U must be defined by 

only u ,  P1' and p1 Y hence a constant. 
A '  A 

By dimensional reasoning, 

U UA = U F (  A 
I 
I 
I 

I 

Now it is possible to let an observer ride on the shock 

AA , reducing the flow near the shock to a steady one. 

For a small area on AA , the conservation laws of 

mass ,  momentum and energy then give 

u2 I 

P2' P2 I 
I 

A 

u 1 A  = u  

el 
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P1 = Pa u2 

P I +  p1 u1 = p2 + P2 u2 
2 2 

30 

h being the enthalpy as used in Eq. ( IV . 14 )I1. 

p = PRT , all thevariables with suffix ”2 ”  can be solved in terms of those with 

suffix l I l l l .  The result is known as the “Rankine - Hugoniot” relations. It turns 

Together with the equation of state, 

out that for given 

a re  all greater than unity, while M2 E U2 / JYRT2 < 1. Furthermore, the entropy 

is found to be higher than S1. Hence, although the same Eq. ( X. 1 ) holds if  
s2 
both U1 and U2 are reversed in direction, the second law of thermodynamics 

is obeyed only when the motion is in the direction sketched. Thus the shock wave 

propagates into the calm region at  a supersonic speed (with respect to the sound 

speed ahead of it ) . 
Turning back to the piston problem, we see that a solution is possible by taking 

= u - u 1  
2 

the disturbed region to be in a uniform state, determined by requiring U 

after the shock of the Mach number M1 

shown in the following manner: We  need 

a solution in the wedge shaped region in 

the x t -plane as shown, taking on the 

velocity u = U along the line OA and 

That there is no other solution can also be 

t. 

B 

the velocity U 2 1  - U and density p 2 0 X 

from the shock relation along the line OB. 

that the solution must depend on a single variable < = x / t .  

that a solution of the form p = p ( e ) ,  u = u ( e )  cannot be made to satisfy the 

boundary condition except as  constants. 

Now the lack of a length scale suggests 

It is then easily verified 

It further is clear that a uniform translation of the entire flow field in any direc- 

tion should not affect the conservation laws. In particular, by imposing a uniform velocity 

U parallel to the wave front A A  ~ the oblique shock making an angle y with the 

9 1 2  
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oncoming velocity U s  is obtained. The 

normal velocity component is therefore 

seen to be the effective one in causing the 

shock wave. In this way the oblique shock 

relations follow immediately, A s  the con- 

servation laws a re  applied to a small area on th 

1 
I 

31 

I 
I 

wave front in deriving Eq. ( X. 1 ) , 
the shock relations are actually local in nature and remain valid locally on any 

curved shock surface. 

The real gas of course has viscosity and heat conductivity a s  dissipative mech- 

anisms, which resist  the discontinuity occurring in a shock wave of zero thickness. 

The net effect is to smear out the shock wave, so that the upstream and downstream 

densities 

only asymptotically. However, most of the 

change occurs in a very small thickness of 

the order of the mean free path of the gas 

molecules. 

G d  p2, say9 m e  zppreached P1 

.T\&Pl ~ X 

Unless the upstream o r  downstream part of the flow varies significantly 

in such a small thickness, the shock structure plays a negligible role in fluid 

dynamics. 

We now mention some examples of steady flows with shock waves. Consider 

a two -dimensional wedge placed in a uniform 

supersonic stream. In previous sections, we 

concluded that the compressive disturbances 

due to the turning of the streamlines to parallel - 
the wedge surface causes the presence of shock 

waves, By inserting a straight oblique shock attached to the vertex, it is generally 

possible to have a uniform and supersonic flow parallel to the wedge after the shock, 

For a given M 

straight shock to turn the streamline sufficiently. 

postulate a "detached shock" in front of the body, starting necessarily as a normal 

shock at the line of symmetry. The flow behind the normal shock is of course sub- 

sonic, but a s  the shock bends gradually toward the body surface away from the line 

1 , however, the wedge angle may be too large for any attached 
1 

Then it becomes necessary to 

'P 

93i3 
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shock 
of symmetry, the flow behind the shock eventually M1) 1 

becomes detached supersonic. shocks is thus The of the flow mixed problem type involving and dif- 4 -  --P -I+ - 
+ - ficult to treat  except numerically. 

A s  soon as curved shocks appear in a uniform 

stream, it should be noted that the flow behind it is strictly speaking always rotational. 

The entropy change depends on the obliqueness of the shock, and the different values of 

entropy along different streamlines give rise to vorticity (Eq. ( I V .  7 ) , "Crocco 

Theorem" 1 For instance. to calculate the shock/ 

flow around a two -dimensional curved body 
M1> 1 

with pointed nose in a supersonic stream, 

the solution should be started with an attached 
4 

4 

shock at the nose and continued by the method - \  
of characteristics, complicated by the unknown shock inclination at successive steps 

as well  as the resulting rotational nature of the flow. 

across a shock turns out to be 

which may be taken as ( p  - p1 ) /p, . If the shock is not strong, the assumption of 

isentropic flow is not too far wrong. 

curved body problem, known as the "shock expansion method", is to regard the 

streamline immediately adjacent to the body as following a Prandtl - Meyer expansion 

after the leading edge shock. Its use of course cannot be extended to hypersonic 

flows where the shock wil l  always be quite strong. 

However, the entropy change 

third order in the Itshock strength'' parameter, 

2 
Thus a practical approximate method for the 

In hypersonic flow the blunt body is 

of practical interest. The very difficult 

problem of the mixed type flow behind a 

detached shock is an inherent feature. 

The limiting case of M +a, however, 1 
permits at least a much simplified first 

approximation. Based upon the observation that, after a normal shock the Rankine - 
Hugoniot conditions give the density ratio as 

s a 4  
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hence if - I( = 1 ,  p2 /pl + 00. 
high temperatures with dissociation 1( becomes even closer to unity. 

rough approximation we might examine the flow with 

the shock will locally simply wrap around the body, since the continuity equation is 

only satisfied by having no thickness between the shock and the body. Neglecting the 

actual thin "shock layer" thickness, the pressure on the body can be determined 

directly from simple momentum consideration: 

For air a t  normal temperatures Y = 1.4 ; at very 

Thus a s  a 

Y = 1. Now as  p 2  /pl + 00, 

p - p,l = & p1 u1 2 2  cos e .  zokh 
v This result is identical with what would have 

been predicted according to Newton's corpus- 

cular theory, that the oncoming gas consists 

of particles moving at the same speed U 

Hence this type of approximation is referred to a s  

effects of the e r ror  of 

the solution in terms of the small parameter ( r - 1 ) / ( r + 1 ) . 

u1 

1' 
Newtonian''. For refinement the 

Y = 1 has been accounted for, for instance, by expanding 

XI. Viscous Flows and the Low Reynolds Number Approximations 

We have so far considered a great deal of the fluid motion under the inviscid 

approximations, on the basis that for small viscosity and high speeds the viscous 

effects will be confined to a thin boundary layer immediately adjacent to the body 

and to a wake behind the body. Such theories obviously can be of no value in 

connection with the question of skin friction and heat transfer which depend on 

the details of the motion within the boundary layer. Furthermore, the precise 

boundaries of the wake must be known in order to construct the essentially inviscid 

solution surrounding the body and the wake. 

It was first systematically observed by Reynolds in pipe flows that the 

viscous fluid motion can assume different forms dependent essentially on the 

dimensionless Reynolds number Re I V L / v  , where V is the characteristic 

velocity ( e.g., mean flow velocity through the pipe ) , L a characteristic length 

915 
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(e.g., the pipe diameter ) and P the kinematic viscosity of the fluid. On the one 

extreme, at sufficiently low Re the fluid may move steadily in layers parallel to 

the pipe axis; on the other, at sufficiently high Re the motion may become time - 

dependent, irregular and random, but with well defined time averages. 

is referred to as  "laminar" motion while the latter is referred to as  "fully turbulent'' 

motion. 

develops into the fully turbulent one, 

layers. 

whether the motion is laminar or  turbulent. 

laminar to turbulent motion is thus of prime importance. 

The former 

Naturally there is also a ''transition'' region in which the laminar motion 

Similar types of motion prevail also in boundary 

The details of the flow clearly cannot be investigated without first knowing 

The question of the transition from 

Generally speaking, when the flow is ostensibly governed by physical parameters 

which a re  invariant with time, the laminar motioncorresponds to the solution of the 

equations of motion under the assumption of steady flow. 

flow can occur without changing any of the governing physical parameters, the ques- 

tion must be one of stability. 

studying the behavior of perturbations. 

theory is rather difficult even for very simple laminar flows under infinitesimal 

disturbances, The results a r e  further valid only for the initial breakdown of the 

laminar flow, Nevertheless the stability theory does provide qualitative correlations 

between transition and the various physical parameters, The actual beginning of the 

fully turbulent region however is yet beyond the capability of theoretical prediction. 

The situation is complicated in addition by the fact that, for bodies in flight, irregu- 

larities of the body surfaces and in the free stream all have profound influence on 

transition 

If deviations from the steady 

A s  usual the stability problem may be formulated by 

Unfortunately, mathematically the stability 

The analysis of fully tnrbu.lent flow is even more difficult. By putting the 

instantaneous flow variable as the sum of the "mean" part plus a fluctuation, equa- 

tions for  the mean motion may be derived from the general equations of motion, but 

contributions due to the non - linear interaction of various fluctuations inevitably 

show up as additional unknowns. For instance, in the mean momentum equation, 

the momentum transfer due to the fluctuating velocity components through the fixed 

control surfaces of a fluid element leads to the turbulent or ltReynoldslt stresses. 

g i 6  

I 
1 
I 
1 
II 
I 
I 
I 
I 
I 
r 
I 
I 
1 
I 
I 
I 
1 
1 



Basic Fluid Dynamics 35 

In simplified analyses, ad hoc assumptions a r e  made by expressing the Reynolds 

stresses in terms of other mean flow variables, and a formal solution may then be 

carried out involving adjustable parameters, which a re  finally chosen in some way 

to agree with experimental findings. Such theories a re  of course semi - empirical 

in nature, but often unavoidable for practical purposes. 

We restrict  ourselves in the following to only some of the laminar flow prob- 

It may be noted that most of the peculiar nature of viscous fluid motion owes lems. 

to the relative roles of the viscous term and the non -linear convective terms such 

a s  V V V  in the equations of motion, Thus not much generality is lost when the 

complications of compressibility a r e  omitted for brevity. 

viscous fluid, Eqs. (111.2 ) and (111.3 ) , together with Eqs. ( 111.9 ) and (111. 1 1 ), 

+ +  

For an incompressible 

a v  + * p ( at + v V V )  = - v p  + y v 2 7  J 
known as  the "Navier - Stokes equations", in which the viscosity coefficient may be 

regarded as constant i f  the temperature range is small. Our pr.pose is to examine 

some of its solutions for flows over bodies. The boundary condition on the body is 

that of "no slip" a s  discussed in §IV* After the velocity and pressure fields a r e  

determined, the temperature field may then be solved separately from the energy 

equation Eq. (111.14 ) under the "no jump'! boundary condition. 

Since Eq. (XI .  1) is non -linear, an attempt to simplify is naturally that of 

linearization for small perturbations. Considering therefore an object moving at 

very low speed in a fluid at rest, we might neglect the quadratic "convective" terms 

V e V V from Eq. ( XI. 1 ). It follows immediately that 
4 -  

(xI.2) I 2 v p = o  

2 2  v v v = o .  
Since the highest order derivatives are not disturbed, it appears that all the boundary 

conditions for the original equations can be accomodated. 

Stokes to calculate the drag on a sphere moving steadily at  a low speed V 

unbound fluid at  rest, and is known as  t'Stokes' approximation". By using the 

This w a s  first used by 

in an 
00 
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sphere radius l r a r r  as a characteristic length and the speed V as the 

characteristic velocity, an order of magnitude estimate gives 
00 

Thus Stokes' approximation corresponds to the limiting case of Re << 1 , i.e., 

very low Reynolds numbers based upon the sphere radius all. 

a 

The explicit solution of Stokes' sphere problem, however, leads to 

asymptotically for large r , 

where r is the radial distance measured from the center of the sphere, the coordi- 

nate axis having been fixed on the sphere. A s  r / a  + 00, we find in fact 

+ 00, 
f % F w -  -? V T  V m r  

2/ P V  v 
showing that Eq. ( XI.  2 ) cannot help but fail as an approximation of Eq. (XI. 1 ) at 

far enough distances, regardless of the smallness of the Reynolds number. 

words, the convective terms eventually take the upper hand as compared with the 

viscous terms. The seemingly innocent Stokes' approximation is not uniformly valid. 

In fact, for two -dimensional problems , it is easy to see that Eq. ( XI 2 ) must lead 

to asymptotically for large r ~ 

In other 

- + -  v - Vm [ 1 + O ( l o g ~ ) ] .  

In an unbound fluid the condition of uniform stream at large distances cannot be 

satisfied at all. 

The difficulty of Stokes' approximation is perhaps best understood by 

observing that there a r e  actually - two characteristic lengths in viscous flow. 

the geometrical length 

field close to the body, the dimensionless distance of interest is indeed r / a  , but 

in the far field away from the body the flow must be expressible in terms of the 

dimensionless distance v r  / V  regardless of the body. In general, therefore, 

two separate approximations are called for, to be matched somehow in an overlapping 

region where both might be acceptable. 

Dyke, it is an example requiring the matching of an "inner" and an ltouter1' 

Besides 

a" we  also have a viscous length Y /Vm.. In the near 

a, 

In the terms of Lagerstrom, Kaplan and Van 

S i 8  
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* expansion 

The criticism of Stokes' approximation regarding its behavior at large distances 

f rom the body was first made by Oseen. A s  a remedy, Oseenss proposal was to recog- 

nize the f a r  field as a small perturbation of the steady uniform stream, hence 
-9 + - +  -+I 

v -  v v g v  ' V V  (XI.  3) 00 
+I --* + 

where V = V - Vm, the perturbation velocity. Since the rest of the terms in Eq. 

(XI.  1 ) a re  linear in V , they may all be written without change in terms of V . 
Retaining Eq. ( XI. 3 ) as  a first approximation of the convective terms everywhere, 

we get the "Oseen equation" for steady flows - 

+ +? 

- 1  
V Q V  - 0  1 

2" I + -*1 

p V , - V V  = - v p + / L v  v 
4 1  

again with the same boundary condition as  before but expressed in V . As an 
approximation for the far  field, evidently the primary effects of the convective terms 

a re  represented correctly. A s  the body is approached, the flow will be characterized 

by the geometrical length t ta l t  

the viscous terms for V 

where the two types of terms a r e  comparable. 

coefficient from the Oseen approximation is found to be 

and the convective terms still a re  much smaller than 

a /t, << 1 e It is however of uncertain validity in the region 

For the sphere problem, the drag 

c = -  6 T  [ 1 + 3 R e a + O ( R e a  2 ) ]  
D Re 8 a 

6 
a where the first term agrees with Stokes' result. ( Terms up to 0 ( R e  ) have been 

computed by Goldstein. ) A recent more careful analysis shows that the 0 (Re  ) 

term in the bracket actually should be - Rea log Rea (Proudman and Pearson, 
40 

J. Fluid Mech. 2 237 -262, 1957 ) . 

2 
a 9 2  

X I .  Theory of the Boundary Layer 

In the other extreme of large Re we  need to describe the motion in the thin 

"boundary layer" immediately adjacent to the body. In §V it is seen that the boundary 

For the technique of l'innerl' and "outer" expansions, see  e.g. M. van Dyke: 
"Perturbation Methods in Fluid Mechanics", Lecture Notes, Stanford University. 

i 
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layer thickness 6 is 0 ( 1 / GL) For a p3i.nt fixed in space, no matter how 

close to the body surface, as Re 4 00 it will  lie outside of the boundary layer. 

This corresponds to dropping formally the viscous terms in the Navier -Stokes 

equation, and yields the inviscid approximation. 

tion within the boundary layer , we must therefore maintain y /8  finite, where y 

denotes the distance from the body surface, even as d + 0 in the limit. To be 

more specific, consider for simplicity the steady two -dimension motion of a flat 

plate moving parallel to itself in an unformed incompressible fluid. 

again two length parameters: the geometric length L of the plate, and the viscous 

boundary layer thickness 6 ,  6 - L / ZL. In the limit Re + 00 o r  8 + 0 ,  

In order to keep the point in ques- 

We have here 

L 
the inviscid solution is simply the undis- 

turbed uniform flow. The u - component 

velocity in the boundary layer parallel to I ___, 
the plate is generally characterized by 

V 

______- - - -  
1c) X 

", tY - *--  

+ k - . L 4  
P The order of magnitude of the v-  

component velocity may be inferred from the continuity equation, 
00. 

Since all changes in the y -direction must be accomplished within the thickness 6 , 
there follows also 

Thus by introducing dimensionless variables of comparable magnitudes 
u '=u/vCx, 9 v * = = v / v  )GL p*=p/pv , ,  2 

00 

x b =  x / L  y*= ( y / L )  JReL, 
Eq. ( X I .  1) becomes 

au* + ~ 3U" - - - -  ap" + - u* - ax* 
1 aP" O ( - )  =-k ' 

ReL aY 

aY* axy ay*2 

9 2  0 

. 
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We now let Re + m and omit the terms 0 ( 1 /Re ) The result is the boundary 

layer equation of Prandtl. 

by a2u/ay 

2 L L 
The most important feature is the replacement of V u 

2 
in the x-momentum equation, retaining at least one of the highest order 

derivatives in the full equation. 

quence of the approximate y - momentum equation that leads to 

The solution is also greatly simplified by the conse- 

P* = P*(X*), 

Le., constant pressure across the boundary layer at each streamwise station. In the 

flat plate case under consideration the pressure must agree with that in the free 

stream, hence a constant. 

u and v a r e  of the same order of magnitude, such as  the stagnation point regions 

at the leading and trailing edges of the flat plate. 

The derivation, however, obviously is not valid wherever 

The same order of magnitude arguments can he applied to b d k s  of arbitrary 

0 but smooth shape. By interpreting the x -  

coordinate as running along the body surface 

and y normal to it, the same boundary 

layer equations result except that the omitted 

terms include those of 0 ( ~ b ) ,  where K is the characteristic curvature of the body 

shape. 

centrifugal force being 0 ( K 6 ) .  

cid solution which prevails beyond the boundary layer, it is noted that since 6 + 0 

in the limit, the conditions at the "edge of the boundary layerft must agree with the 

inviscid solution evaluated at the body surface. This consideration leads to the boun- 

dary conditions that, as y* -+ co 

The pressure remains unchanged in the y - direction, the correction due to 

To match the boundary layer solution with the invis- 

u * ui ( X , O ) ,  P -)Pi (X,O) 

u. ( x , y ) and p. ( x , y ) being the inviscid solutions. There is on the other hand no 

condition on v* a s  y* + OD ; so long as it is finite, the discrepancy between 
1 1 

approximation, A t  the body surface y = 0 ,  the "no slipIf condition of viscous fluids 

must be satisfied by setting u = 0, v = 0 as usual. 

It should be remarked that the boundary layer equation would assume different 
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forms depending on the choice 0f the coordinate system, hence also the flow field 

which follows as the solution. In his study of the two -dimensional steady incom- 

pressible boundary layers, Kaplan introduced the notion of an "optimal" system 

of coordinates that render the boundary layer solution to agree completely, as 

yy + 00, with the inviscid solution evaluated at  the surface y + 0 , in both u - 
and v -components to 0 ( 1 / ,,/% ) . But the boundary layer solutions in the 

optimal and any other non -optimal system of coordinates are shown to be able to 

transform into each other, 

body surface is independent of the coordinate system. 

nate system is therefore not too crucial for ordinary purposes. 

Furthermore, he proved that the skin friction at the 

The choice of the coordi- 

Though much simplified from the full Navier - Stokes equation, the non - linear 

To reduce Eq. ( X I .  1 ) to a boundary layer equation still defies general treatment. 

single dependent variable, the stream function may be introduced by defining 

u*= ay/ay* , v*= -a$f/ax* 
guaranteeing thereby the satisfaction of the continuity equation. Now we apply the 

"van Mises  transformation'' to the second equation of Eq. ( XI. 1 ) by choosing 

(x , p) a s  the independent variables instead of ( x  , y ) and obtain 

(XII. 2) 
p* = p * ( x )  , given . 

This equation is clearly parabolic in nature. Indeed, if the dimensionless stagnation 

pressure P replaces ux as the dependent variable 
f 

U+2 p" I p* + - 
2 

Eq. ( X I .  2 ) may be put into the form n 

which becomes the diffusion equation but with a complicated diffusivity. 

solution P* (x, can be found in the region x* 0 ,  ps 0 if  we specify an 

initial profile P* ( 0  p) along xx = 0 and also the condition P" (x , 0 ) along 

r= 0 .  Since p* (x") is a given function, the conditions on P" of course are 

equivalent to the statement that from a given initial velocity profile u ( 0 , y ) the 

Thus the 

9 L t  
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solution can be continued uniquely to x 7 0 for given p ( x  ) . A s  p+ a, 
a 2 p / a @  + 0 ~ hence aP*/ax + 0 and the solution merges with the inviscid 

potential flow Ps = const, Note also that no disturbances a re  propagated upstream. 

It is of interest to be able to stipulate an initial profile for the boundary layer 

over an arbitrary body. For all blunt - v, (?/ 

nosed bodies there always exists a front 

stagnation point 0. Locally the flow is 

equivalent to that against an infinite wall 

normal to the stream. 

as a special case of the symmetrical flow 

against a wedge of half angle o( . ( In  fact, the flat plate also is a special case,  with 

d = 0 .  ) In all such cases i t  turns out that the inviscid potential flow is of the type 

This is recognized 

v K x m ,  
a, 

the exponent m depending on the half angle O( , 0 L m 4 1 for 0 o( 4 f/2. 

Although we do not have an initial profile u ( 0 ,  y ) , a class of "similar solutions" 

can be found in the form 

dF - -  U - 
VmD(x) d q  

where F = F (7) and y is defined by 
1 /2 = y / [ 2 v x / ( l + m ) V  ] . 

The function F ( r )  corresponds to the stream function, satisfying an ordinary 
a0 

differential equation: 
F " ' + F F " + p ( l - F '  2 ) = O  

,t3 = Z m / ( l + m )  

with the required boundary conditions: 

( X I I . 3 )  

(xII.4) 
y = O ,  u = v = O  o r  F ( 0 ) = F 1 ( O ) = O  

Y - J , ~ , ,  u + V m ( x )  o r  F 1 ( a o ) - + l .  

The case of m = 0 gives the Blasius solution for the flat plate. The case of m = 1 

gives the stagnation point solution, which is in fact the exact solution of the Navier - 
Stokes equation for the same problem. The existence and uniqueness of the solution 
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of Eq. ( XI1 3) under boundary condition Eq, ( XI1 , 4 ) a r e  established mathematically 

for  p S 0 by Weyl. 

calculated by Falkner and Skan, and refined by Hartree, 

to note that the condition F 1 (00 ) + 1 fails to determine a unique solution, and 

Hartree had to stipulate the additional requirement that F 1 ( y )  should approach 

unity in the most rapidly possible way. Even so,he had to stop at p = - .199 , beyond 

which the velocity develops an overshoot within the boundary layer which seems 

physically hard to accept, 

Numerical solutions for various values of ,b ( o r  m )  were 

it is interesting For /8< 0 

A t  ,d = - 199 the profile has the feature that 

au /ay l  = 0 .  y = o  
The similar solutions a re  useful 

not only to start  numerical calculations 

near the stagnation point, but have often 

been used as the basis for constructing 

a first approximation for flows involving U / V m  

rather arbitrary pressure distributions as might occur in practical problems. 

an arbitrary V ( x )  be given, then - dp/dx = V (dV / d x ) .  Now, proceeding 

as for similar solutions, let u / V  = aF/?Iy but F = F ( t; 7 ) with 

Let 

00 03 00 

00 

The boundary layer equation for F in ( 6 , 7 ) is found to be 

The boundary conditions a r e  still Eq. I( XI1 . 4  ) 

r = O ,  F = F  = O ;  ~ + c o ,  F + l o  
7 7 

The approximation next is to neglect the right-hand side and solve F as an ordinary 

differential equation with P ( 5 ) as  a parameter, In other words, the similar solu- 

tion corresponding to the local p ( 6 ) is used as an approximation, the past history 

being partially accounted for by the F -transformation. 

similar” approximation. 

series expansion in  the solution of Eq. (XII. 5 )  Nickel (K.  Nickel; Ing. Arch. 31, 

This is known as the ‘‘locally 

For improvement Gijrtler took it as the first term of a 

9 2  4 
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85 - 100, 1962 ) verified that the local similar solution always provides a lower bound 

of the true solution u ( x y ) so long as dp/ d=$G 0 

Let us adopt the locally similar approximationto get a qualitative picture of the 

flow within a boundary layer under pressure gradient. 

always "favorable" (V; % 0 ) , p 3 0 , w e  expect rather normal velocity distributions 

somewhat like that on a flat plate. But if V 1 c 0 , it becomes possible for ,d to reach 

the critical value of - e 199 and even exceed it. 

the boundary layer beyond that point. 

If the pressure gradient is 

00 

There can then be no description of 

The question arises:  what happens then? 

It is usually taken that what happens then is the observed phenomenon of "sepa- 

ration'', i.e. the streamline begins to detach from the surface. 

point, close to the surface the flow direction will be reversed, and the boundary layer 

Beyond the separation 

r p p r ~ x i m ~ t i ~ f i  ceases to hold. That sepa- 

ration indeed could happen at ,d = - .199 is 

made plausible by noting that here 

d u / a y  0 .  Since the streamline direc- 

tion at the wall is given by 

- w a y  = - -  aU ax * = I 1  dx u y = o  - au/ay  ly.o /aY L O  

hence dy / d x  = 0 if bu /ay  I 
indefinite if  a u / a y (  

gradient is necessary for separation, in perfect agreement with experience. 

# 0 ; but the slope is of the form 0 / 0 , therefore y = O  
= 0 .  According to this criterion, an adverse pressure y = O  

We briefly turn to the energy equationagain for incompressible fluids, to intro- 

duce the basic concepts in heat transfer. The equation reads, after taking the boun- 

dary layer approximations, 

ah a k ah 
PuZ P ay ay cP ay + v - = - ( - - )  ah 

.-. (XI. 6) 

where the Prandtl number P r  / u / C p k  Y .76 for a i r  in ordinary temperature 

range, The equation clearly is of the same structure as the x-momentum equation 

in Eq. ( XI1 e 1 ) . When ( u  v ) a re  described by a similar solution, h will 



Basic Fluid Dynamics 44 

resemble u in behavior and depend on the same variable. The equation is linear 

for given ( u , v ) , and can be more easily solved in general. 

simplest case of flat plate, where the x - momentum equation is 

aU au b U  
i3X 

Let us mention only the 

2 
pu- + p a y  = p a y 2  4 

For the case of Pr = 1, we clearly have a special solution h = au + b , with 

constants a and b , suitable as  the solution if h assumes constant values at 

y = 0 and a s  y +oo , i.e., constant wall and f r ee  stream temperatures. 

transfer at the wall is, in such cases 

The heat 

or  4/.r0 = a ,  r 0 
analogy" (of heat transfer and skin fr ic t ion) ,  ordinarily cast in terms of non - 

dimensional coefficients. 

being the shear s t ress  at the wall. This is bown  as  ''Reynolds' 

In the case of compressible fluids, the boundary layer concept can be used to 

Through the variable derive a set  of simplified equations similar to Eq. ( X I .  1) .  

density, the momentum and energy equations become coupled and must be solved 

simultaneously, adding much complexity in the solution. Only in special cases may 

the problem be reduced to an equivalent incompressible one through suitable trans- 

formations. At hypersonic speeds, the shock wave, whether detached o r  not, tends 

to approach the body surface. 

with each other, o r  even merge together. All these phenomena require considerable 

finesse in handling. 

theory is yet in an undeveloped stage. 

Then the inviscid and viscous layers would interact 

For general three - dimensional bodies in unsteady motion, the 
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The Spheroidal Method. 1. 

The.potentia1 function for the Earth can be written as 

[ 1 - n=2 r (5)" JnPn (sin e) + Tesseral harmonics 1 v = -  

where 
0 :  latitude 
r: geocentric distance 
: Earth's equatorial radius. re 

Most theories for satellite motion employ perturbation 
methods starting with the unperturbed potential, Vo = -g/r. 
However, because of the oblate shape of the Earth, it is 
possible to choose a zero-order potential which is a 
better approximation and at the same time leads to a 
separable Hamilton-Jacobi equation. 

The motivation is based upon the fact that the 
Hamilton-Jacobi equation is separable in oblate-spheroidal 
coordinates. These coordinates can be defined by the 
relations 

2 2  2 2 E.ie (1-7 I] x + iy = r cos ecie = [cp +c 
P77 Z = r s i n 9 =  

( =  p/c , 
where for large values of r 

P -r y - s i n e  0 

(3) 

The coordinates are p17p7"; 
ascencion. 

'7" is the longitude of right 
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It can be demonstrated that the Hamilton-Jacobi 
if and only if P J W  equation is separable in 

v = --- 0 5 + r 7  
(4) 

One then looks for the most general functions f and 
g which satisfy the following form of the Laplace equation 
and do not lead to singularities on the [ -axis: 

It can be shown that the most general form of V 
that satisfies these conditions is 

The potential V can be expanded into spherical harmonics 
in the following manner: 

( 7 )  

00 n 

n=O 
= (+) Pn (sin e)  

Therefore, we can write 

2 



The Spheroidal Method. 3. 

For large r, we must choose b0c = -p ;  t o  sakisfy (l), we 
require c = re J2. It can be demonstrated that 2 2 

blc 2 = preJl = -gf 
- 5 = coordinate of mass center. 

Thus, 
4 r 

V =  L. r [ l - + J 2 P 2 - 7  r 
r 2 

e J 4 4  P + ...I 
where 

2 54 = -J- 
2 

J6 = J2 3 

4 J8 = -J2 , e tc . ,  

and a l l  odd J 's  vanish. 

For 

the s ingu la r i t i e s  a t  p / c  = 77 = 0 a r e  foca l  c i r c l e s .  

Connection with Problem of Two Fixed Centers. - -- 

where 
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= r2 + a2 - 2ar s i n  e '1 

= r2 + a + 2ar sin e '2 

2 

2 

These lead t o  the  expansions 

4. 

(15) 

2n 00 R 00 

l m  - - C (s) pL ( s i n  e )  = z C 
1 ,bo rl R=o r ( s i n  Q) - -  'en 

(16) '1 

'2 '2 A=o 2n ( s i n  0) - = -  

L e t  
a = c f i  

2 m = M  
2 6 m  = ,Ll 

The po ten t i a l  i n  (14)  can then be wr i t t en  as 

2 When c = re2J2> w e  have the same r e s u l t  as (11)> but 
w e  don ' t  know that t h i s  is the most general  p o t e n t i a l  
t ha t  r e s u l t s  i n  s e p a r a b i l i t y o  

The coordinates for the two centers  a r e  

r2+P1 S =  2a 

o r  

9 3 2  

- 
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If a = i c ,  one can v e r i f y  that 

1 z = 

' J  

5. 

One can ask i n  w h a t  sense the  two p o t e n t i a l s  are i d e n t i c a l .  
I n  the problem of two centers ,  one can d i s t r i b u t e  mass 
uniformly between the two s i n g u l a r i t i e s .  For t h e  more 
genera l  p o t e n t i a l ,  d i s t r i b u t i n g  the mass uniformly over 
the f o c a l  c i r c l e  does not  produce the  same f i e l d .  

The geoid i s  defined by the r e l a t i o n  

[l - (  5)' J2P2 + E ]  + $ W 2 r  cos 2 8 = constant,  (23) 
r e 

= 0(J22), 

2 Thus, through terms of O(J2 ) $  the geoid is  

1+ € [l - ( 2 JeP2] + &) 1 2 2  re cos '€3 = constant .  (24) 

Neglecting any harmonics o f  coe f f i c i en t  
produces a f r a c t i o n a l  e r r o r 9  E 

beyond J2 

6 Eg. J3 = 2.3 x 10- ., 

Since the separable p o t e n t i a l  i s  accurate  through J2, 
the e r r o r  of the corresponding geoid is  l e s s  than 

[ l J 2 1  + J4 + J2 
2 

+ IJJ + J~ - ~~~1 + ... -I J121] .re, 

' 9 3 3  
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t h i s  value probably being less than 120 f e e t .  

Separation - of Hamilton-Jacobi Equation. 

H =  c p 2 -  L113 2 0  
P +c 77 

L e t  

6 .  

The separation constants are al = energy, a,, a 3  = Z- 
component of  angular momentum. 

The i s o l a t i n g  i n t e g r a l s  are 

One f i n d s  i n t e g r a l s  of the form 

s1 = J t  [ I  d P  

s2 - - /t I . I d 7 l  

s3 = a3+ 

9 3 4  
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The Spheroidal Method. 7 .  

(33 )  

motion confined between two hyperboloids: 

- 15 s 7 1 9  

(34) 
motion f o r  negative energy ,a l<O,  is  confined between 
two spheroids:  Pl<p5p2.  

oo2, A, B are a l l  funct ions of 
A 

qQ, 7 2' p y  , 
and some funct ion of t he  i n i t i a l  condi t ions.  

a 2 '  a3 

Following Izak, new var iab les  are introduced: 

P2- P1 
P 2+ P1 

c =  ( 3 5 )  

The r e a l  d i f f i c u l t y  l ies  i n  inve r t ing  (30) and (31) 

P+ 7' t o  so lve  f o r  

This is  accomplished by first introducing the  uni- 
forming va r i ab le s  E, V, , X defined by the r e l a t i o n s  

a ( l -e2)  p = a ( 1  - e cos. E )  = l+e cos 



The Spheroidal Mfthod. 

Assume the  expansions 

E 

V 

X 

= Es + Eo + El + E2 
= v, 4- Vo * VI 4- V2 

= xs + xo + x1 4- x2 3 

11 01 where ,he s subscr ip t  denotes the sec lar  part .  

Es = Vs = Ms = secu la r  part  of  mean anomaly. 

One f i n d s  

8. 

( 3 7 )  

Let 

( 3 8 )  

Including the  per iodic  terms of order  J2, 

Ms + Eo - e p  s i n  (Ms + Mo) = Ms 

--u 
a. - 2 q  

a = a. + o ( J ~ )  

V i s  then found from t he  r e l a t i o n s  

9343 



The Spheroidal Method. 

cos E 
1-e cos E cos v = 

1 
I 

s i n  V = (l-e2)’sin E 
1-e cos E 

9.  

By including per iodic  terms of order  J2, one can 
a l s o  f i n d  r e l a t i o n s  f o r  Xo In  terms of Vo. 

The terms l e f t  out of the g r a v i t y  p o t e n t i a l  a r e  
3 4 

&?L (J4 + J2 ) P4 ( s i n  0 )  + .... ( s i n  e )  + 2 r 
5 r AV =p + J P 

r 3 3  

Effec ts  of 39.5 Percent Aspherical Deviations. - 

Kozai 

Vint i 

Secular  

J23 
J2- 

Short  Period 

J22 
2 

J2 

Long Period 

Doesn’t e x i s t  

Doesn * t exist  

Ef fec t s  of Remaininq 0.5 Percent Aspherical Deviations.  

Kozai 

- 
Algorithm 

2 Very long J23 J: J2 
2 2 

V i n t i  J2 J2 J2 Long 
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Physical Experiments in Zero g Laboratories. 1 

1. Forces Acting on Satellite 

The principal forces acting on an artificial earth satellite a r e :  

gravitational forces including zonal and tesseral  harmonics 

lunar - solar perturbations 
a ) 
b ) 
c )  spin orbit interactions 

d )  nongravitational forces including 

( i )  atmospheric drag 

( i i )  meteoritic impact 

( iii ) 

( i v )  

( v )  

solar radiation pressure 

charge in electric field; induced electric dipole in non -uniform 
electric field 

charged body induced magnetic moment; moving relative to the 
earth! s magnetic field 

( v i )  ferromagnetic currents 

(vii ) induced currents in satellite producing eddy current effects 

In principle, all the non - gravity forces can be neutralized in the satellite by 
using precisely controlled jet motors in conjunction with a suitable instrument which 

indicates the presence and direction of any non - neutralized gravity force. 

2 Unmanned Double Satellite 

The nongravitational forces can be neutralized by the jet, 

illustrated in the figure. For a spherical satellite, the zero - 

gravity condition i s  maintained by keeping the sensing element 

in the center of the satellite by using a servo -mechanism to 

control the jets. A t  lower altitudes, the atmospheric drag is the most important of the 

nongravitational forces. Thus the amount of jet thrust required to keep the test object 

centered i s  a measure of the drag force. 

3.  Manned Space Capsule 

a )  The test instrument can be a sphere containing a small ball. The sphere must be 

rigidly attached to the capsule, be electromagnetically shielded from s t ray  fields, and 
have an opening for observing and measuring the displacement of the ball. The external 

capsule jets might be under control of an astronaut who would keep the test object centered 
at the center of mass. 

b )  Example : Consider a Mercury - type capsule in a 200 km. orbit. 

9 4 0  
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Physical Experiments in Zero g Laboratories 2 

6 mass = 10 gm. 

drag = 6x10 dyne 4 

= 1 . 6  02. 

3 At 300 km. , the drag is 6x  10 dyne. 

c ) Compressed A i r  Jet : 
One possible type of control would be a compressed air jet 

illustrated in the figure. Suppose that the orifice had a diameter 

of 1 mm. and the a i r  is at 6 atmospheres pressure. The thrust 

generated by the jet is 
50 kg. force sec. 

7 
T =  kg. mass 

To produce the required 6x 10 dynes corresponding to the height of 200 km.,  the 
a i r  reservoir would require 6.8 kg. per circular orbit. If the orbit's eccentricity is 
e = 0.03, 1 . 6  kg. of air would be required per orbit. 

On the other hand, increasing the orbit height to 300 km. reduces the preceding 

a i r  capacity figures by a factor of ten. However, for long flights of many orbits, the 

required weight of the reaction gas would be excessive. 

d )  Chemical jets: 

Microchemical jets are being developed which will be far more efficient than the 
simple compressed air jets. The microchemical jets have thrust capabilities of the 

order of 
300 kg. force sec. , T =  kg. mass 

These produce 6 times the thrust of the air jets at 1/6 of the mass of the required jet 

material. For example 
Altitude Weight per Orbit 

Circular 200 

Circular 300 

1 kg. 

0.1 
e = 0.03 200 250 p. 

e = 0.03 300 25 gm. 

3. 

Then 

Gravitational Field Inside a Capsule and Relative to It 

Let x,  y, z be a set  of inertial  coordinates. 



Physical Experiments in Zero g Laboratories 

F = gravity force 

F =drag  force 
R = vector to the center of mass; C.M. 

For the test object, T , 

G 

D 

i i t F = f .  
Therefore, 

FD t -  
.. 

M 
R = -  

M 

and 

3 

* I  

is the gravitational field acting on the test object relative to an inertially oriented 

capsule. If the capsule is not inertially oriented, one has to add the apparent forces, 
- 2 u x E ,  w x ( c j x r )  andthe Gj force. 

For a spherically symmetric capsule 

f C . M .  M , rigourously. - FG - -  

If the capsule is not spherically symmetric, then the preceding relation is an approxi- 

mation a The gravitational acceleration relative to the capsule is 

FD - -  .* 
fC.M. M 

g = r = f -  

For small capsules not at very high altitudes, 

FD I f  - fc.M.l'< * 

Thus, as an approximation 

FD g = -- 
M *  

4. Determination of Drag by Measurements Inside Capsule 

Let 

Then if the test object s tar ts  from rest  at or near the C. M., in a time t it will 
travel a distance 

2 s = 1/2 a t  . 
9 4 2  
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Physical Experiments in Zero g Laboratories 4 

It is assumed that the test object is contained in a housing that is evacuated and well 

shielded from electromagnetic fields. 

For example, for a Mercury-type capsule at 200 km., 

I FDI = 6 x 10 

M = 10 gm. 

a = 6 X 10 cm./sec.  

In 10 seconds, the test object will have moved 

s = 1/2 ( 6 x 1 0 - 2 )  100 = 3cm.  

4 dynes 
6 

- 2  2 

At 300 Inn. one finds s = 3 111111. 

There are a few objections to the proposed measurement technique. 

( a )  Apparent forces: Centrifugal forces entirely negligible and produce 
errore of 2boct 1/50 a. 

( b )  Accelerations produced by body motions of astronaut: The main 
irremovable effect is that caused by heart beats which can produce 

instantaneous accelerations of about 10 a. These accelerations vary 

very rapidly and tend to smooth out in the inertia of the mechanical 
systems. 

Ballistocardiography tests have indicated peak displacements from a mean 

position of 0.03 mm. for a human subject coupled to a capsule. The corresponding 

displacement of the test object would be only 0.003 mm. compared with s = 3 mm. 

at a height of 300 km. produced by drag. 

5. Determination of AtmosDheric Densitv 

If the drag force FD is measured, the atmospheric density can be computed 

FD = 1/2 CDA,ov 

from 
2 

For most capsules C 

the design of the capsule. 

2 . 3  , v2 is known from the orbit and A is known from D 

For non - spherical satellite, A can be maintained at a constant value during 

the measurement of atmospheric density by keeping an axis of the capsule parallel 

to the velocity vector. Such control can be accomplished by control jets governed by 
a pair of static accelerometers. 

9 4 3  



Physical Experiments in Zero g Laboratories 5 

6 .  Determination of Perigee Passage 

At perigee, the velocity i s  

1/2 v2 = E t p / r  
2 v has a maximum at perigee; moreover, the air density ,O is also a maximum 

at perigee. Even for low eccentricity orbits such as e = 0.03, the maximum of 

,o is very sharp. Therefore, by continuously monitoring the drag force, the 

astronaut can determine perigee passage and by the use  of a clock can determine 
the time of perigee passage, 

7. 

By intermittently operating the control jets, the astronaut could measure the 

drag and return the test object to the center of the housing at each test so as never 

to permit any col.lisions within the accuracy of the observations. Note that under 

these conditions, the orbit of the capsule is then the same a s  that of the test object 

and is thus gravitational. 
Thus we have a technique of simultaneously producing a gravity orbit and 

determining the time of perigee passage in each orbit. With proper cooperation 

from ground observers, one can also determine the position of perigee on each 

orbit. This type of controlled gravity orbit might be very useful for geodetic pur- 

poses, both to determine the potential coefficients Jn and to determine station 

location errors .  

8. Re - entry Meter 

- 3  Consider a case in which a = 10 

s = 1/2at2 = 1/2 x 1 x 2 5  = 12 .5cm.  

g. Then in 5 seconds the test object would 
move 

Thus the test object in its evacuated housing combined with a stop watch is a sensitive 

g - meter which would be simple and almost perfectly f a i l  -proof. 

9. Tacking the Drag on to a Gravitational Orbit 

A s  the astronaut si ts  in the capsule, watching the test object drift along, the 

motion that he observes is the difference between the true orbit of the capsule and the 
gravitational orbit of a particle that starts out with the same position and velocity 

vectors. This can be explained by considering the figure. 

(344 
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Physical Experiments in Zero g Laboratories 

Let r be the position vector of 

a very heavy particle, and r + 5 r be 

the position vector of a satellite which 

starts out with the same initial conditions 

as the heavy particle. 

Let : 

6 

'I 
k p s  

r+6r =r, 

Y 
( i )  

( i i )  

r = r [ accurate gravity field, no drag I 
r + 6 r = rl [ approximate gravity field, with drag I 

9 

/ = rl [ v  = - 7 t f - ( 1 - ~  '-e J2P2) + d r a g ]  
r 

(iii) r2 = rZ [ approximate gravity field, no drag]  /x 
8r = r, - r 9  

For short time intervals, J2 does not have to be included in rl , because the 
A Y 

line of apsides moves slowly (4"/ day). Thus J2 can be neglected for times less 
than a day. In any case, one doesn't need any terms beyond J , drag, J2x drag, 
in the solution for rl a In particular no terms of the order J j  are required. 

It can be concluded that in the above fashion, the problem of drag can be 

separated from the problem of the accurate gravitational orbit. To find the effect of 

drag, solve the problems ( i i )  and (iii) then the difference 6 r , and add to r . 
It should be observed that this method will  not work for  very long time intervals. 

For  very long intervals one cannot depend upon knowledge of the air density function 

p ( r , e )  . The air density function is so poorly known that one will have to redetermine 
the orbital elements long before J2 

In other words, the problem of atmospheric drag is not sufficiently well modeled 

mathematically to warrant a very accurate mathematical treatment. 

2 etc. , become necessary in the expression for  rl . 

10. Zero g Laboratories - Achieved with jets and floating test object 

( a )  Point of zero g characterized by f = FG / M . It is at the center for capsule with 
spherical symmetry 

( b )  In other cases,  point of zero g may o r  may not exist. It probably would not exist 
in a space laboratory having the shape of a torus. Usually, if it exists, it will be close 

to the C. M. Let u s  assume that the departures from zero g at the C. M. are small. 

( c )  
all experiments impossible on earth because of all -pervasive gravity field. 

Possible experiments in zero g laboratories: free top, liquid shapes and motions, 

9 4  . >  



Physical Experiments in Zero G Laboratories 7 

f d)  
forces, o r  both. In this lecture we will only discuss the determination of the 

constant G 

( e )  
as a close earth satellite. This implies that the mean densities must be equal, o r  

Experiments in dynamical astronomy, with gravitational o r  electrostatic 

It has been noted that the period of a close satellite of the moon is the same 

4 3  2 3  G ~ r a  = n a 

Thus, a marble travelling in a close circular orbit around a sphere whose mean 
density approximates that of the earth would have a period T = 84 minutes. O r  

more accurately, 

2 n  3 a3 G ( M + m )  = (TI  , 

where a is the semi -major axis of the orbit which need not be a perfect circle. 

The large sphere used to model the earth could float at the C. M. of the 

laboratory; it would be kept at this point by external jets which a r e  controlled to 
maintain a gravity orbit. Thus if  this sphere were enclosed in an evacuated 

spherical housing with electromagnetic shielding and an observation port, then the 

sphere itself could serve a s  the test object for maintaining the gravity orbit. A 

marble could then be placed in  orbit about the sphere by accurately controlling the 

initial conditions to insert the marble in a close, nearly circular orbit. If M y  m , 
and T a r e  measured and a can be determined with sufficient precision, then the 

preceding relation can be used to compute G . 
11. Lack of Spherical Symmetry 

Consider the acceleration of the mass 
G 4 n a 3  

- 4 n  - G ~ p a .  3 

a 2 f =  

For a perfect sphere of radius re 

a 1/2 1 - 4  2 thus 
f = c g e  = -7 x l o 3  = - x 10 cm./sec. 4 2 lt 10 

milligal . - 40 
5 Suppose a perturbing mass, m = 10 gm. i s  placed at a distance r = 200 cm. 
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Physical Experiments in Zero g Laboratories 8 

from the C.M. the change in acceleration would be 

2Gm a 
3 

N -  
G m  Gm & f = - -  

r ( r - a )  r 2 -  2 

For  example, 

G = 6 . 7  x lo-' cgs units 

m = 10 gm. 
r = 200 cm. 

a = 1 5 c m . ;  

Af = 25* 10 cgs units; 

5 

- 9  

- 3  and Af -- - 25 lo: = 10 , which is too high a value. 
f 1/4 x 10- 

3 If the asymmetry can be reduced to 10 

case of 

gm. at 200 cm. ,  then we obtain the better 

There are several difficulties that must be considered in the proposed experiment 

for the determination of G . 
( i )  
environments can be minimized by floating the large sphere which is accelerated 

about as much as in the marble. The effect of nonspherical environment is equivalent 

to the lunar - solar perturbations of an earth satellite, - l/r3 . These effects might 

be further diminished by using shims and having personnel move countermasses to 

balance their own movements in the laboratory. 

( i i )  
shield the experiment electrostatically from charge because of the presence of high 

velocity cosmic rays. It will be  necessary to avoid the Van Allen belts for  these 
experiments 

(iii) The control sphere used to model the earth will have unavoidable lack of com- 
plete symmetry. Thus the problem is more complicated and will have to be treated 

as a nonspherical earth and must be represented by zonal harmonics. Probably the 

dominant te rms  will  be J1 

J1 can be found by determining the C.M. of the sphere using a compound 

pendulum. This determination can be accomplished on the ground before flight. 

and J22 can be determined by measuring the principal moments of inertia A ,  B , C 

on the ground by means of a torsion pendulum. This is done by determining the 

moments of inertia about the various axes, then 

Lack of spherical symmetry in surroundings. The effect of nonspherical 

Electrostatic charges on sphere and marble. It is impossible to completely 

J2 , J22 

J2 

L 
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Physical Experiments in Zero g Laboratories 9 

( A  +B)  
C - 2  1 

J Z 2 S  z ( A - B ) .  1 

2 J =  2 m a  

The effects of the nonspherical sphere can then be accounted for by applying 

an appropriate theory for satellite orbits about an oblate earth. 

a 
I 
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